tailieunhanh - Đề thi chọn học sinh giỏi cấp tỉnh môn Toán 9 năm 2017-2018 có đáp án - Sở GD&ĐT Thanh Hóa

Nhằm chuẩn bị kiến thức cho kì thi chọn học sinh giỏi cấp tỉnh sắp tới mời các bạn học sinh lớp 9 tham khảo Đề thi chọn học sinh giỏi cấp tỉnh môn Toán 9 năm 2017-2018 có đáp án - Sở GD&ĐT Thanh Hóa dưới đây để có thêm tư liệu ôn tập, luyện tập chuẩn bị cho kì thi sắp tới đạt kết quả cao! | SỞ GIÁO DỤC VÀ ĐÀO TẠO THANH HÓA ĐỀ CHÍNH THỨC KÌ THI CHỌN HỌC SINH GIỎI CẤP TỈNH NĂM HỌC 2017-2018 Môn thi: TOÁN - Lớp 9 THCS Thời gian: 150 phút (không kể thời gian giao đề) Ngày thi: 10 tháng 3 năm 2018 (Đề thi có 01 trang, gồm 05 câu) Số báo danh Câu I (4,0 điểm). x 2 x x 1 1 2x 2 x , với x 0, x 1. Rút gọn P x x 1 x x x x x2 x và tìm tất cả các giá trị của x sao cho giá trị của P là một số nguyên. 1. Cho biểu thức P 4( x 1) x 2018 2 x 2017 2 x 1 1 3 2. Tính giá trị của biểu thức P tại x . 2 2 x 3x 2 3 2 2 3 2 Câu II (4,0 điểm). 1. Biết phương trình (m 2) x 2 2(m 1) x m 0 có hai nghiệm tương ứng là độ dài hai cạnh góc vuông của một tam giác vuông. Tìm m để độ dài đường cao ứng với cạnh huyền của 2 tam giác vuông đó bằng . 5 ( x y ) 2 (8 x 2 8 y 2 4 xy 13) 5 0 2. Giải hệ phương trình 1 2 x x y 1 Câu III (4,0 điểm). 1. Tìm nghiệm nguyên của phương trình y 2 5 y 62 ( y 2) x 2 ( y 2 6 y 8) x. 2. Cho a, b là các số nguyên dương thỏa mãn p a 2 b2 là số nguyên tố và p 5 chia hết cho 8. Giả sử x, y là các số nguyên thỏa mãn ax 2 by 2 chia hết cho p . Chứng minh rằng cả hai số x, y chia hết cho p . Câu IV (6,0 điểm). Cho tam giác ABC có (O),( I ),( I a ) theo thứ tự là các đường tròn ngoại tiếp, đường tròn nội tiếp và đường tròn bàng tiếp đối diện đỉnh A của tam giác với các tâm tương ứng là O, I , I a . Gọi D là tiếp điểm của ( I ) với BC , P là điểm chính giữa cung BAC của (O) , PI a cắt (O) tại điểm K . Gọi M là giao điểm của PO và BC , N là điểm đối xứng với P qua O. 1. Chứng minh IBI aC là tứ giác nội tiếp. 2. Chứng minh NI a là tiếp tuyến của đường tròn ngoại tiếp tam giác I a MP. 3. Chứng minh DAI KAI a . Câu V (2,0 điểm). Cho x, y, z là các số thực dương thỏa mãn x z. Chứng minh rằng xz y2 x 2z 5 . 2 y yz xz yz x z 2 ------------- HẾT -------------- SỞ GIÁO DỤC VÀ ĐÀO TẠO THANH HÓA KÌ THI CHỌN HỌC SINH GIỎI .

TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
5    139    0    22-01-2025
50    106    0    22-01-2025
40    124    0    22-01-2025
32    94    0    22-01-2025
15    117    0    22-01-2025
5    134    0    22-01-2025