tailieunhanh - Đề thi thử toán - số 34 năm 2011

Tham khảo tài liệu đề thi thử toán - số 34 năm 2011 , tài liệu phổ thông, ôn thi đh-cđ phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả | Đề số 34 I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu I: (2 điểm): Cho hàm số: . 1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. 2) Biện luận theo m số nghiệm của phương trình: (m>0) Câu II:(2 điểm) 1) Giải bất phương trình: 2) Giải phương trình : Câu III: (1 điểm): Tính tích phân: I= Câu IV: (1 điểm): Cho hình chóp tứ giác đều có độ dài cạnh đáy bằng a, các mặt bên tạo với mặt đáy góc 60o. Mặt phẳng (P) chứa AB và đi qua trọng tâm của tam giác SAC cắt SC, SD lần lượt tại M, N. Tính thể tích khối chóp theo a. Câu V: (1 điểm) Cho 4 số thực a, b, c, d thoả mãn: ; c – d = 3. Chứng minh: RIÊNG ( điểm ) A. Theo chương trình Chuẩn Câu : (2 điểm) 1) Trong mặt phẳng với hệ toạ độ Oxy, cho tam giác ABC với A(3; –7), B(9; –5), C(–5; 9), M(–2; –7). Viết phương trình đường thẳng đi qua M và tiếp xúc với đường tròn ngoại tiếp ABC. 2) Trong không gian với hệ toạ độ Oxyz, cho hai đường thẳng: và Xét vị trí tương đối của d1 và d2. Viết phương trình đường thẳng qua O, cắt d2 và vuông góc với d1 Câu : (1 điểm) Một hộp đựng 5 viên bi đỏ, 6 viên bi trắng và 7 viên bi vàng. Nguời ta chọn ra 4 viên bi từ hộp đó. Hỏi có bao nhiêu cách chọn để trong số bi lấy ra không có đủ cả ba màu? B. Theo chương trình Nâng cao : Câu : (2 điểm) 1) Trong mặt phẳng với hệ toạ độ Oxy, cho tam giác ABC có đỉnh A(1; 3) và hai đường trung tuyến của nó có phương trình là: x – 2y + 1 = 0 và y – 1 = 0. Hãy viết phương trình các cạnh của ABC. 2) Trong không gian với hệ toạ độ Oxyz, cho hai điểm A(0; 0;–3), B(2; 0;–1) và mặt phẳng (P) có phương trình: . Viết phương trình chính tắc đường thẳng d nằm trên mặt phẳng (P) và d vuông góc với AB tại giao điểm của đường thẳng AB với (P). Câu : (1 điểm) Tìm hệ số x3 trong khai triển biết n thoả mãn: Hướng dẫn Đề số 34 Câu I: 2) PT . Dựa vào đồ thị ta suy ra được: 0 : PT v ô nghiệm Câu II: 1) Tập xác định: D = x = 1 là nghiệm x 2: BPT vô nghiệm x : BPT có nghiệm x BPT có tập nghiệm S= 2) PT cos 2x= x= Câu III: Xét: . Đặt . Ta chứng minh được I1 = I2 Tính I1 + I2 = I1 = I2 = EMBED I = 7I1 – 5I2 = 1 Câu IV: Gọi I, J lần lượt là trung điểm cúa AB và CD; G là trọng tâm ∆SAC ∆SIJ đều cạnh a nên G cũng là trọng tâm ∆SIJ IG cắt SJ tại K là trung điểm cúa SJ; M, N là trung điểm cúa SC, SD ; SABMN = SK (ABMN); SK = . V= . Câu V: Áp dụng BĐT Bunhiacopxki và giả thiết ta có: Ta có Dựa vào BBT (chú ý: ), ta suy ra được: Dấu "=" xảy ra khi . Câu : 1) y + 7 = 0; 4x + 3y + 27 = 0. 2) Đường thẳng cần tìm cắt d2 tại A(–1–2t; t; 1+t) = (–1–2t; t; 1+t) PTTS của Câu : Số cách chọn 4 bi từ số bi trong hộp là: Số cách chọn 4 bi đủ 3 màu từ số bi trong hộp là: Số cách chọn thoả mãn YCBT là: Câu : 1) (AC): x + 2y – 7 = 0; (AB): x – y + 2 = 0; (BC): x – 4y – 1 = 0. 2) Giao điểm của đường thẳng AB và (P) là: C(2;0;–1) Đường thẳng d đi qua C và có VTCP là d: Câu : Xét khai triển: , thay x = 1; x = –1 và kết hợp giả thiết ta được n = 12 Khai triển: có hệ số x3 là: =101376