tailieunhanh - Đề cương chi tiết học phần Toán giải tích

Toán giải tích là một học phần của Toán cao cấp, đề cập đến các vấn đề cơ bản về giải tích toán học như hàm nhiều biến, phương trình vi phân, chuỗi số và chuỗi hàm, tích phân bội, tích phân đường và tích phân mặt. Đây là môn học giúp sinh viên phát triển tư duy logic, phương pháp suy luận đồng thời trang bị lượng kiến thức cơ sở quan trọng giúp sinh viên các ngành kỹ thuật và công nghệ học tốt các môn toán chuyên đề và các môn học chuyên ngành sau này. | TRƯỜNG ĐẠI HỌC KINH TẾ - KỸ THUẬT CÔNG NGHIỆP KHOA KHOA HỌC CƠ BẢN BỘ MÔN TOÁN ĐỀ CƯƠNG CHI TIẾT HỌC PHẦN TOÁN GIẢI TÍCH 1. THÔNG TIN CHUNG Tên học phần tiếng Việt TOÁN GIẢI TÍCH Tên học phần tiếng Anh MATHEMATICAL ANALYSIS Mã môn học 11 Khoa Bộ môn phụ trách Khoa Khoa học cơ bản Bộ môn Toán Giảng viên phụ trách chính TS. Lê Xuân Huy Email lxhuy@ GV tham gia giảng dạy TS. Lê Xuân Huy TS. Phạm Văn Bằng CN. Lê Thanh Sơn ThS. Trần Văn Toàn ThS. Vũ Thị Ngọc. Số tín chỉ 3 36 18 90 Số tiết Lý thuyết 36 Số tiết TH TL 18 48 24 2 15 tuần x 4 tiết tuần Số tiết Tự học 90 Tính chất của học phần Bắt buộc Học phần tiên quyết Không Học phần học trước Không Các yêu cầu của học phần Sinh viên có tài liệu học tập 2. MÔ TẢ HỌC PHẦN Toán giải tích là một học phần của Toán cao cấp đề cập đến các vấn đề cơ bản về giải tích toán học như hàm nhiều biến phương trình vi phân chuỗi số và chuỗi hàm tích phân bội tích phân đường và tích phân mặt. Đây là môn học giúp sinh viên phát triển tư duy logic phương pháp suy luận đồng thời trang bị lượng kiến thức cơ sở quan trọng giúp sinh viên các ngành kỹ thuật và công nghệ học tốt các môn toán chuyên đề và các môn học chuyên ngành sau này. 3. MỤC TIÊU CỦA HỌC PHẦN ĐỐI VỚI NGƯỜI HỌC Kiến thức 1 Nắm được các kiến thức cơ bản nhất về Toán giải tích như Các khái niệm và cách tính thức tính đạo hàm và vi phân hàm nhiều biến Khái niệm về phương trình vi phân cách nhận biết giải một số phương trình vi phân cơ bản Các khái niệm về chuỗi sự hội tụ của chuỗi số và cách tìm miền hội tụ của chuỗi lũy thừa Biết cách tính các loại tích phân bội tích phân đường và mặt. Kỹ năng Vận dụng các kiến thức vào việc giải các dạng bài tập cơ bản và liên hệ để giải một số bài toán liên quan đến chuyên ngành. Năng lực tự chủ và trách nhiệm Tự phát triển và hoàn thiện kiến thức môn học. Phát huy tư duy Toán vào các vấn đề khác cũng như trong cuộc sống. 4. CHUẨN ĐẦU RA HỌC PHẦN Mã Mô tả CĐR học phần CĐR của CĐR Sau khi học xong môn học này người học có thể CTĐT G1

TỪ KHÓA LIÊN QUAN