Đang chuẩn bị liên kết để tải về tài liệu:
Bài giảng Giải tích hàm nhiều biến: Chương 4 - Nguyễn Thị Xuân Anh
Đang chuẩn bị nút TẢI XUỐNG, xin hãy chờ
Tải xuống
Bài giảng "Giải tích hàm nhiều biến - Chương 4: Tích phân hai mặt" cung cấp cho người học các kiến thức: Tích phân mặt loại 1, tích phân mặt loại 2, công thức Gauss, công thức Stokes, nội dung chi tiết. | Bài giảng Giải tích hàm nhiều biến: Chương 4 - Nguyễn Thị Xuân Anh CHƯƠNG IV: TÍCH PHÂN MẶT §1. TÍCH PHÂN MẶT LOẠI 1 §1. TÍCH PHÂN MẶT LOẠI 2 CuuDuongThanCong.com https://fb.com/tailieudientucntt Tích phân mặt loại 1 Định nghĩa : Cho hàm f(x,y,z) trên mặt S. Chia S thành n phần tùy ý không dẫm lên nhau. Gọi tên và diện tích của mỗi mặt đó là ΔSk, k=1, 2, , n . Trên mỗi mảnh đó ta lấy 1 điểm Mk tùy ývà lập tổng n Sn f (Mk ) Sk k 1 Cho max(dΔSk) → 0 (dΔSk là đường kính của mảnh Sk), nếu tổng trên dần đến 1 giới hạn hửu hạn thì ta gọi đó là tp mặt loại 1 của hàm f(x,y,z) trên mặt S, kí hiệu là n f ( x, y , z )ds lim f (Mk ) Sk max( d Sk ) 0 k 1 S CuuDuongThanCong.com https://fb.com/tailieudientucntt Tích phân mặt loại 1 Tính chất : Diện tích mặt S được tính bởi S ds S ( f g )ds fds gds S S S Nếu mặt S được chia thành 2 mặt không dẫm lên nhau là S1 và S2 thì fds fds fds S S1 S2 CuuDuongThanCong.com https://fb.com/tailieudientucntt Tích phân mặt loại 1 Cách tính: f ( x, y , z )ds f ( x, y , z( x, y )) 1 zx2 zy2dxdy S Dxy Trong đó : Dxy là hình chiếu của S xuống mặt phẳng Oxy (z=0) Từ pt mặt S là F(x,y,z)=0 ta rút ra z theo x, y để được z=z(x,y) Biểu thức 1 zx2 zy2dxdy ds được gọi là vi phân của mặt S CuuDuongThanCong.com https://fb.com/tailieudientucntt Tích phân mặt loại 1 Ví dụ 1: Tính tích phân I1 trên mặt S là phần mặt nón z2=x2+y2 với 0≤z≤1 của hàm f(x,y,z)=x+y+z Hình chiếu của S xuống mp z=0 là Dxy : 0≤x2+y2≤1 x zx x2 y2 Pt mặt S (z dương) z x2 y2 → y zy 2 2 x y Suy ra: ds 2dxdy Vậy: I1 (x y z )ds (x y x2 y 2 ) 2dxdy S Dxy CuuDuongThanCong.com https://fb.com/tailieudientucntt Tích phân mặt loại 1 Đổi tp sang tọa độ cực: 2 1 I1 d cos sin r rdr 0 0 2 I1 3 CuuDuongThanCong.com https://fb.com/tailieudientucntt Tích phân mặt loại 1 Ví dụ 2: Tính tích phân I2 của hàm f(x,y,z)=x+2y+3z trên mặt S là mặt xung quanh tứ diện x=0, y=0, z=0, x+2y+3z=6 C Mặt S gồm 4 mặt nên tp I2