tailieunhanh - Bài giảng Giải tích hàm nhiều biến: Chương 1 - Nguyễn Thị Xuân Anh
Bài giảng "Giải tích hàm nhiều biến - Chương 1: Đạo hàm và vi phân" cung cấp cho người học các kiến thức: Các khái niệm cơ bản – Giới hạn và liên tục, đạo hàm riêng, khả vi và Vi phân, đạo hàm riêng và vi phân hàm hợp,. . | Bài giảng Giải tích hàm nhiều biến: Chương 1 - Nguyễn Thị Xuân Anh GIẢI TÍCH HÀM NHIỀU BIẾN • CHƯƠNG I: ĐẠO HÀM VÀ VI PHÂN • CHƯƠNG II : TÍCH PHÂN BỘI • CHƯƠNG III: TÍCH PHÂN ĐƯỜNG • CHƯƠNG IV: TÍCH PHÂN MẶT • CHƯƠNG V: CHUỖI SỐ - CHUỖI LŨY THỪA CHƯƠNG I: ĐẠO HÀM VÀ VI PHÂN • §1: Các khái niệm cơ bản – Giới hạn và liên tục • §2: Đạo hàm riêng • §3: Khả vi và Vi phân • §4: Đạo hàm riêng và vi phân hàm hợp • §5: Đạo hàm riêng và vi phân hàm ẩn • §6: Công thức Taylor – Maclaurint • §7: Cực trị hàm nhiều biến : Cực trị tự do, cực trị có điều kiện, GTLN-GTNN trong miền đóng §1 : Các khái niệm cơ bản – Giới hạn và liên tục Định nghĩa hàm 2 biến : Cho D là tập con của R2 Hàm 2 biến f(x,y) là ánh xạ f : D → R ( x, y ) f ( x, y ) z Miền xác định của hàm là tất cả các giá trị của (x,y) làm biểu thức của hàm có nghĩa Miền giá trị của hàm là tập các giá trị mà hàm có thể nhận được §1 : Các khái niệm cơ bản – Giới hạn và liên tục Ví dụ : Tìm MXĐ, MGT của hàm f ( x, y ) 9 x2 y2 MXĐ là hình tròn D ( x, y ) R 2 : x 2 y2 9 MGT là đoạn [0,3] MXĐ 3 f(x,y) 3 0 3 (x,y) MGT §1 : Các khái niệm cơ bản – Giới hạn và liên tục x y 1 Ví dụ: Cho hàm f ( x, y ) x 1 Tính f(2,1) và tìm MXĐ của f Giải : a. f(2,1) = 2 b. MXĐ : Ta lấy nửa mặt phẳng phía trên đường thẳng x+y+1 = 0 và bỏ đi toàn bộ đường x = 1 §1 : Các khái niệm cơ bản – Giới hạn và liên tục Cho f(x, y) là hàm 2 biến với MXĐ là D. Đồ thị của f là tập tất cả các điểm M(x, y, z) R3, với (x, y) D, z = f(x, y) Đồ thị hàm z = f(x, y) là phần mặt S, khác với đồ thị hàm 1 biến y = f(x) là phần đường cong. §1 : Các khái niệm cơ bản – .
đang nạp các trang xem trước