Đang chuẩn bị liên kết để tải về tài liệu:
Bất đẳng thức cô si trong các kì thi tuyển sinh đại học và cao đẳng - Huỳnh Kim Linh
Đang chuẩn bị nút TẢI XUỐNG, xin hãy chờ
Tải xuống
Tài liệu "Bất đẳng thức cô si trong các kì thi tuyển sinh đại học và cao đẳng" trình bày các kiến thức cơ bản và các dạng bài tập minh họa có lời giải hướng dẫn chi tiết về bất đẳng thức cô si trong các kì thi tuyển sinh đại học và cao đẳng. Mời các bạn tham khảo. | www.VNMATH.com BẤT ĐẲNG THỨC CÔ SI TRONG CÁC KÌ THI TUYỂN SINH ĐẠI HỌC VÀ CAO ĐẲNG Lời nói đầu : Thực hiện nhiệm vụ năm học 2008 – 2009, Trường THPT Chuyên Lê Quý Đôn Khánh Hòa khuyến khích các giáo viên dạy môn chuyên, làm chuyên đề để xây dựng tài nguyên của tổ chuyên môn. Chính vì vậy tôi đã thực hiện và làm chuyên đề về : BẤT ĐẲNG THỨC CÔ SI TRONG CÁC KÌ THI TUYỂN SINH ĐẠI HỌC VÀ CAO ĐẲNG Trong các kì thi tuyển sinh đại học và cao đẳng, có một hay hai câu khó để phân loại thí sinh và thường có một câu về bất đẳng thức. 1) Định lý (Bất đẳng thức Cô si) : Cho n số thực không âm : a1 ; a2 ; .; an Ta có : √ a1 + a2 + . + an ≥ n a1 a2 .an n Đẳng thức xảy ra khi và chỉ khi a1 = a2 = · · · = an 2) Một số bất đẳng thức liên quan đến bất đẳng thức Cô si : 2.1) Các Bất đẳng thức dạng phân thức Với x, y > 0. Ta có : 1 1 4 + ≥ x y x+y (1) 1 4 ≥ xy (x + y)2 (2) Đẳng thức xảy ra khi và chỉ khi x = y. Với x, y, z > 0. Ta có : 1 1 1 9 + + ≥ x y z x+y+z (3) Đẳng thức xảy ra khi và chỉ khi x = y = z. 2.2) Các bất đẳng thức dạng đa thức : x2 + y 2 + z 2 ≥ xy + yz + zx (4) 3 x2 + y 2 + z 2 ≥ (x + y + z)2 (5) (x + y + z)2 ≥ 3 (xy + yz + zx) (6) Đẳng thức xảy ra khi và chỉ khi x = y = z. 3) MỘT SỐ BÀI TOÁN THI ĐẠI HỌC : Bài toán 1 : Đề thi tuyển sinh Đại học khối A năm 2005 Cho x, y, z là các số thực dương thỏa mãn : 1 1 1 + + =4 x y z Huỳnh Kim Linh Trang thứ 1 trong 12 trang www.VNMATH.com BẤT ĐẲNG THỨC CÔ SI TRONG CÁC KÌ THI TUYỂN SINH ĐẠI HỌC VÀ CAO ĐẲNG Chứng minh rằng : 1 1 1 + + ≤ 1. 2x + y + z x + 2y + z x + y + 2z Lời giải : Cách 1 : Áp dụng bất đẳng thức : 1 1 4 + ≥ x y x+y Với x, y > 0, ta được : 8=2 1 1 1 + + x y z = 1 1 1 1 1 1 1 1 1 + + + + + ≥4 + + x y y z z x x+y y+z z+x (1) Tương tự 2 1 x+y + 1 y+z 1 2x+y+z ≥4 1 1 1 1 = x+y + x+z x+y z+x 1 1 + x+y+2z (2) x+2y+z + + + 1 y+z 1 y+z + 1 z+x Từ (1) và (2) suy ra 8≥8 1 1 1 + + 2x + y + z x + 2y + z x + y + 2z ⇔ 1 1 1 + + ≤ 1. 2x +