Đang chuẩn bị liên kết để tải về tài liệu:
Bài toán tiếp xúc
Đang chuẩn bị nút TẢI XUỐNG, xin hãy chờ
Tải xuống
Trong các ngành kĩ thuật chúng ta gặp rất nhiều trường hợp hai vật thể tiếp xúc với nhau. Ví dụ như sự tiếp xúc của hai bánh răng ăn khớp, sự tiếp xúc giữa bánh vít và trục vít, giữa ổ bi với bạc, giữa vành trong của ổ bi với trục truyền động, giữa hai trục cán với nhau.Khi mới tiếp xúc, ban đầu có thể là điểm hay đường, nhưng sau khi biến dạng tăng lên thì sự tiếp xúc của hai vật thể đàn hồi sẽ biến thành tiếp xúc mặt. . | Chương 23 BÀI TOÁN TIẾP XÚC Trong các ngành kì thuật chúng ta gặp rất nhiều trường hợp hai vật thể tiếp xúc với nhau. Ví dụ như sự tiếp xúc của hai bánh răng ăn khớp sự tiếp xúc giữa bánh vít và trục vít giữa ổ bi với bạc giữa vành trong của ổ bi với trục truyền động giữa hai trục cán với nhau.Khi mới tiếp xúc ban đầu có thể là điểm hay đường nhưng sau khi biến dạng tăng lên thì sự tiếp xúc của hai vật thể đàn hồi sẽ biến thành tiếp xúc mặt. Diện tích tiếp xúc thường rất bé so với bề mặt của vật thể nên sự xuất hiện giữa biến dạng và ứng suất chỉ tập trung ở miền tiếp xúc có tính cục bộ. Điều đó có nghiã là biến dạng và ứng suất chỉ tập trung ở miền tiếp xúc và giảm rất nhanh ở ngoài miền tiếp xúc đồng thời ứng suất xuất hiện ở miền tiếp xúc có giá trị rất lớn nó dẫn đến sự phá huỷ ở vùng đó. Ứng suất có thể là ứng suất tĩnh cũng có thể là ứng suất động hoặc ứng suất thay đổi theo thời gian. Khi chi tiết chịu ứng suất tiếp xúc thay đổi theo thời gian nó cũng gây ra hiện tượng mỏi lớp bề mặt và dĩ nhiên nó cũng làm cho các vết nứt vi mô phát triển thành những vết nứt bề mặt và bề mặt sẽ bị phá huỷ làm cho bề mặt bị rỗ hoặc tróc. Trong khi xem xét bài toán tiếp xúc chúng ta cần công nhận một số lời giải cũng như kết quả mà lí thuyết đàn hồi đã chứng minh. Z1 Z2 23.1. BÀI TOÁN TIẾP XÚC CỦA HEZT. Giả sử có hai vật thể đàn hồi đồng nhất đẳng hướng tiếp xúc với nhau tại điểm O không phải là điểm kì dị. Lúc đó vật thể 1 tác dụng lên vật thể 2 một lực ép P xem hình 23.1 . Bây giờ chúng ta hãy xác định diện tích tiếp xúc độ dịch gần của hai vật thể quy luật phân bố áp suất trên diện tích tiếp xúc. Tức là nghiên cứu trạng thái biến dạng ứng suất xuất hiện ở hai vật thể tiếp xúc đó để tính toán độ bền và độ cứng của chúng. 23.1.1. Quan hệ hình học đối với bề mặt của hai vật thể tiếp xúc. Trước hết chúng ta tạo các hệ trục như trên hình vẽ 23.1. Hai hệ trục toạ độ đó chung gốc O-là điểm tiếp xúc hai vật thể. Các hệ trục Ox1y1 và Ox2y2 cùng nằm trong một mặt phẳng tiêp xúc .