Đang chuẩn bị liên kết để tải về tài liệu:
Đề thi tuyển sinh lớp 10 THPT năm học 2012-2013 môn Toán - Sở Giáo dục và Đào tạo Đà Nẵng

Đang chuẩn bị nút TẢI XUỐNG, xin hãy chờ

Xin giới thiệu tới các bạn học sinh, sinh viên "Đề thi tuyển sinh lớp 10 THPT năm học 2012-2013 môn Toán - Sở Giáo dục và Đào tạo Đà Nẵng", đề thi bao gồm 5 câu hỏi tự luận có kèm đáp án và thang điểm với thời gian làm bài 120 phút. Hy vọng đề thi là nguồn thông tin hữu ích phục vụ cho quá trình học tập và ôn thi của các bạn. | SỞ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI TUYỂN SINH LỚP 10 THPT TP.ĐÀ NẴNG Năm học: 2012 – 2013 MÔN: TOÁN Thời gian làm bài: 120 phút Bài 1: (2,0 điểm) 1) Giải phương trình: (x + 1)(x + 2) = 0 2) Giải hệ phương trình: Bài 2: (1,0 điểm) Rút gọn biểu thức Bài 3: (1,5 điểm) Biết rằng đường cong trong hình vẽ bên là một parabol y = ax2. 1) Tìm hệ số a. 2) Gọi M và N là các giao điểm của đường thẳng y = x + 4 với parabol. Tìm tọa độ của các điểm M và N. Bài 4: (2,0 điểm) Cho phương trình x2 – 2x – 3m2 = 0, với m là tham số. 1) Giải phương trình khi m = 1. 2) Tìm tất cả các giá trị của m để phương trình có hai nghiệm x1, x2 khác 0 và thỏa điều kiện . Bài 5: (3,5 điểm) Cho hai đường tròn (O) và (O’) tiếp xúc ngoài tại A. Kẻ tiếp tuyến chung ngoài BC, B (O), C (O’). Đường thẳng BO cắt (O) tại điểm thứ hai là D. 1) Chứ`ng minh rằng tứ giác CO’OB là một hình thang vuông. 2) Chứng minh rằng ba điểm A, C, D thẳng hàng. 3) Từ D kẻ tiếp tuyến DE với đường tròn (O’) (E là tiếp điểm). Chứng minh rằng DB = DE. BÀI GIẢI Bài 1: 1) (x + 1)(x + 2) = 0 x + 1 = 0 hay x + 2 = 0 x = -1 hay x = -2 2) Bài 2: = = = = 4 Bài 3: 1) Theo đồ thị ta có y(2) = 2 2 = a.22 a = ½ 2) Phương trình hoành độ giao điểm của y = và đường thẳng y = x + 4 là : x + 4 = x2 – 2x – 8 = 0 x = -2 hay x = 4 y(-2) = 2 ; y(4) = 8. Vậy tọa độ các điểm M và N là (-2 ; 2) và (4 ; 8). Bài 4: 1) Khi m = 1, phương trình thành : x2 – 2x – 3 = 0 x = -1 hay x = 3 (có dạng a–b + c = 0) 2) Với x1, x2 0, ta có : 3(x1 + x2)(x1 – x2) = 8x1x2 Ta có : a.c = -3m2 0 nên 0, m Khi 0 ta có : x1 + x2 = và x1.x2 = 0 Điều kiện để phương trình có 2 nghiệm 0 mà m 0 > 0 và x1.x2 < 0 x1 < x2 Với a = 1 x1 = và x2 = x1 – x2 = Do đó, ycbt và m 0 (hiển nhiên m = 0 không là nghiệm) 4m4 – 3m2 – 1 = 0 m2 = 1 hay m2 = -1/4 (loại) m = 1 Bài 5: 1) Theo tính chất của tiếp tuyến ta có OB, O’C vuông góc với BC tứ giác CO’OB là hình thang vuông. 2) Ta có góc ABC = góc BDC góc ABC + góc BCA = 900 góc BAC = 900 Mặt khác, ta có góc BAD = 900 (nội tiếp nửa đường tròn) Vậy ta có góc DAC = 1800 nên 3 điểm D, A, C thẳng hàng. 3) Theo hệ thức lượng trong tam giác vuông DBC ta có DB2 = DA.DC Mặt khác, theo hệ thức lượng trong đường tròn (chứng minh bằng tam giác đồng dạng) ta có DE2 = DA.DC DB = DE.