Đang chuẩn bị liên kết để tải về tài liệu:
Bài giảng Đại số quan hệ
Đang chuẩn bị nút TẢI XUỐNG, xin hãy chờ
Tải xuống
1. Định nghĩa và tính chất 2.Biểu diễn quan hệ 3.Quan hệ tương đương. Đồng dư. Phép toán số học trên Zn 4.Quan hệ thứ tự. Hasse Diagram Quan hệ RELATIONS 1 2 1. Definitions Definition. A quan hệ hai ngôi từ tập A đến tập B là tập con của tích Descartess R A x B. Chúng ta sẽ viết a R b thay cho (a, b) R Quan hệ từ A đến chính nó được gọi là quan hệ trên A 1. Definitions Example. A = students; B = courses. R = {(a, b) | student a is enrolled in class b} R = {. | Phần V Quan hệ RELATIONS 1 Relations 1. Định nghĩa và tính chất 2. Biểu diễn quan hệ 3. Quan hệ tương đương. Đồng dư. Phép toán số học trên Zn 4. Quan hệ thứ tự. Hasse Diagram 1. Definitions Definition. A quan hệ hai ngôi từ tập A đến tập B là tập con của tích Descartess R c A x B. Chúng ta sẽ viết aRb thay cho a b e R Quan hệ từ A đến chính nó được gọi là quan hệ trên A 1. Definitions Example. A students B courses. R a b student a is enrolled in class b 1 1. Definitions Example. Cho A 1 2 3 4 và R a b a là ước của b Khi đó R 1 1 1 2 1 3 1 4 2 2 2 4 3 3 4 4 1234 1234 5 2. Properties of Relations Định nghĩa. Quan hệ R trên A được gọi là phản xạ nếu a a e R với mọi a e A Ví dụ. Trên tập A 1 2 3 4 quan hệ R1 1 1 1 2 2 1 2 2 3 4 4 1 4 4 không phản xạ vì 3 3 Ể R1 R2 1 1 1 2 1 4 2 2 3 3 4 1 4 4 phảnxạ vì 1 1 2 2 3 3 4 4 e R2 6 Quan hệ trên Zphản xạ vì a a với mọi ae Z Quan hệ trên Zkhông phản xạ vì 1 1 Quan hệ ước số trên Z là phản xạ vì mọi số nguyên a là ước của chính nó . Chú ý. Quan hệ R trên tập A là phản xạ iff nó chứa đường chéo của A X A A a a a e A 1 2 3 4 12 3 4 2. Properties of Relations Định nghĩa. Quan hệ R trên A được gọi là đối xứng nếu Va e A Vb e A a R b b R a Quan hệ R được gọi là phản xứng nếu Va e A Vb e A a R b A b R a - a b Ví dụ. Quan hệ R1 1 1 1 2 2 1 trên tập A 1 2 3 4 là đối xứng Quan hệ trên Z không đối xứng. Tuy nhiên nó phản xứng vì a b A b a a b 8 2 Quan hệ ước số trên Z - không đối xứng Tuy nhiên nó có tính phản xứng vì a b A b a a b Chú ý. Quan hê R trên A là đối xứng iff nó đối xứng nhau qua đường chéo A của A X A. Quan hệ R là phản xứng iff chỉ có các phần tử nằm trên đường chéo là đối xứng qua A của A X A. 4 3 2 1 12 3 4 2. Properties of Relations Định nghĩa. Quan hệ R trên A có tính bắc cầu truyền nếu Va e A Vb e A Vc e A a R b A b R c a R c Ví dụ. Quan hệ R 1 1 1 2 2 1 2 2 1 3 2 3 trên tập A 1 2 3 4 có tính bắc cầu. Quan hệ và trên Z có tính bắc cầu a b A b c a c a b A b c a c 10 3. Representing Relations Introduction Matrices .