Đang chuẩn bị liên kết để tải về tài liệu:
Vấn đề duy nhất của hàm phân hình đối với các cặp điểm

Đang chuẩn bị nút TẢI XUỐNG, xin hãy chờ

Bài viết giới thiệu về các định lý cơ bản của lý thuyết Nevanlinna gồm Định lý cơ bản thứ nhất, Định lý cơ bản thứ hai. Sử dụng để thiết lập và chứng minh cho định lý về sự xác định duy nhất của hàm phân hình khi có cùng ảnh ngược của 6 cặp điểm. | Vấn đề duy nhất của hàm phân hình đối với các cặp điểm VẤN ĐỀ DUY NHẤT CỦA HÀM PHÂN HÌNH ĐỐI VỚI CÁC CẶP ĐIỂM Nguyễn Thị Thu Hằng Khoa Toán Email: hangntt82@dhhp.edu.vn Ngày nhận bài: 18/3/2019 Ngày PB đánh giá: 24/4/2019 Ngày duyệt đăng: 26/4/2019 TÓM TẮT Năm 1926, R. Nevanlinna đã chứng minh được rằng nếu hai hàm phân hình khác hằng f và g trên mặt phẳng phức có cùng ảnh ngược của 5 giá trị phân biệt thì f = g (Định lý 5 điểm) và Định lý 4 điểm: nếu hai hàm phân hình có cùng ảnh ngược của 4 điểm phân biệt thì sẽ là một biểu diễn phân tuyến tính của nhau. Từ đó, vấn đề duy nhất về hàm phân hình được nhiều nhà toán học quan tâm nghiên cứu. Trong bài báo này, chúng tôi giới thiệu về các định lý cơ bản của lý thuyết Nevanlinna gồm Định lý cơ bản thứ nhất, Định lý cơ bản thứ hai. Từ đó, chúng tôi sử dụng để thiết lập và chứng minh cho định lý về sự xác định duy nhất của hàm phân hình khi có cùng ảnh ngược của 6 cặp điểm. Từ khóa: lý thuyết Nevanlinna, vấn đề duy nhất cho hàm phân hình. UNIQUE PROBLEM FOR MEROMORPHIC FUNCTION SHARING PAIRS OF VALUES ABTRACT In 1926, R. Nevanlinna proved the well-known Five-point Theorem: “Let f and g be two meromorphic functions on . If f ( ai ) = g ( ai ) for five distinct points ai ( i = 1, . . . , 5), −1 −1 then f = g”. Since then such the similar unique property of meromorphic functions has been studied extensively. In this paper, we introduced The first theorem and The Second theorem of Nevanlinna theory. Thus, we established the theorem of unique problem for meromorphic function sharing 6 pairs of values. Keywords: Nevanlinna theory, uniqueness problem. 1. GIỚI THIỆU Cho hai hàm phân hình f , g và cho a và b là hai giá trị phức bất kì. Ta nói rằng hai hàm phân hình f và g có cùng ảnh ngược đối với cặp giá trị (a, b) nếu thỏa mãn: f ( z0 ) = a khi TẠP CHÍ KHOA HỌC, Số 34, tháng 05 năm 2019 105 và chỉ khi f ( z0 ) = b với z0 ∈ . Trong trường hợp .