Đang chuẩn bị liên kết để tải về tài liệu:
CHƯƠNG 4: ĐỒ THỊ EULER VÀ ĐỒ THỊ HAMILTON

Đang chuẩn bị nút TẢI XUỐNG, xin hãy chờ

Đồ thị EULER: - Đường đi qua mỗi cạnh của đồ thị đúng một lần được gọi là đường đi Euler. Chu trình qua mỗi cạnh của đồ thị đúng một lần | ) Quy nạp theo số đỉnh và số cạnh của G. Do G liên thông và deg(v) là số chẵn nên bậc của mỗi đỉnh của nó không nhỏ hơn 2. Từ đó theo bổ đề G phải chứa chu trình C. Nếu C đi qua tất cả các cạnh của G thì nó chính là chu trình Euler. Giả sử C không đi qua tất cả các cạnh của G. Khi đó loại bỏ khỏi G tất cả các cạnh thuộc C ta thu được một đồ thị mới H vẫn có bậc là chẵn. Theo giả thiết qui nạp, trong mỗi thành phần liên thông của H điều tìm được chu trình Euler. Do G là liên thông nên trong mỗi thành phần của H có ít nhất một đỉnh chung với chu trình C. Vì vậy, ta có thể xây dựng chu trình Euler trong G như sau: bắt đầu từ một đỉnh nào đó của chu trình C, đi theo các cạnh của C chừng nào chưa gặp phải đỉnh không cô lập của H. Nếu gặp phải đỉnh như vậy ta sẽ đi theo chu trình Euler của thành phần liên thông của H chứa đỉnh đó. Sau đó lại tiếp tục đi theo cạnh của C cho đến khi gặp phải đỉnh không cô lập của H thì lại theo chu trình Euler của thành phần liên thông tương ứng trong H v.v (xem hình 3). Quá trình sẽ kết thúc khi ta trở về đỉnh xuất phát , tức là thu được chu trình đi qua mỗi cạnh của đồ thị đúng một lần.