Đang chuẩn bị liên kết để tải về tài liệu:
Báo cáo khoa học: "A Graph-based Semi-Supervised Learning for Question-Answering"
Đang chuẩn bị nút TẢI XUỐNG, xin hãy chờ
Tải xuống
We present a graph-based semi-supervised learning for the question-answering (QA) task for ranking candidate sentences. Using textual entailment analysis, we obtain entailment scores between a natural language question posed by the user and the candidate sentences returned from search engine. The textual entailment between two sentences is assessed via features representing high-level attributes of the entailment problem such as sentence structure matching, question-type named-entity matching based on a question-classifier, etc. We implement a semi-supervised learning (SSL) approach to demonstrate that utilization of more unlabeled data points can improve the answer-ranking task of QA. .