Đang chuẩn bị liên kết để tải về tài liệu:
Microsoft Data Mining integrated business intelligence for e commerc and knowledge phần 8

Đang chuẩn bị nút TẢI XUỐNG, xin hãy chờ

XML (Extensible Mark Up Language) dựa trên SGML, XML được sử dụng để mô tả các định dạng, trình bày và kiểm soát các nội dung của tài liệu này được dựa trên ngôn ngữ đó. Các Extensible Markup Language (XML) là descriptively Xác định trong Khuyến nghị của W3C XML 1.0 là một phương ngữ cực kỳ đơn giản, | 218 Glossary XML Extensible Mark Up Language Based on SGML XML is used to describe the format presentation and control of content of documents that are based on this language. The Extensible Markup Language XML is descriptively identified in the XML 1.0 W3C Recommendation as an extremely simple dialect or subset of SGML the goal of which is to enable generic SGML to be served received and processed on the Web in the way that is now possible with HTML for which reason XML has been designed for ease of implementation and for interoperability with both SGML and HTML. B References Pieter Adriaans and Dolf Zantinge. Data Mining. Addison-Wesley 1996. Michael J. A. Berry and Gordon Linoff. Data Mining Techniques for Marketing Sales and Customer Support. John Wiley Sons 1997. W. A. Belson. A technique for studying the effects of a television broadcast Applied Statistics 5 1956 195. Michael J. A. Berry and Gordon S. Linoff. Mastering Data Mining The Art and Science of Customer Relationship Management. John Wiley Sons 2000. Alex Berson Stephen Smith and Kurt Thearling. Building Data Mining Applications for CRM. McGraw-Hill 2000. David Biggs B. de Ville and E. Suen A method of choosing multiway partitions for classification and decision trees Journal of Applied Statistics 18 1 1991 49-62. Leo Breiman J. H. Friedman R. A. Olshen and C. J. Stone. Classification and Regression Trees Wadsworth 1984. Barry de Ville Applying statistical knowledge to database analysis and knowledge base construction Proceedings of the Sixth IEEE Conference on Artificial Intelligence Applications IEEE Computer Society Washington 30-36 March 1990. N. M. Dixon. Common Knowledge How Companies Thrive by Sharing What They Know Harvard Business School Press 2000. H. J. Einhorn. Alchemy in the behavioral sciences Public Opinion Quarterly 36 1972 367-378. Usama M. Fayyad Gregory Piatetsky-Shapiro Padhraic Smyth and Ramasamy Uthurusamy. Advances in Knowledge Discovery and Data Mining AAAI Press The MIT Press