Đang chuẩn bị liên kết để tải về tài liệu:
Classical Mechanics Joel phần 6

Đang chuẩn bị nút TẢI XUỐNG, xin hãy chờ

Các locus có thể cho một điểm trên trục đối xứng của đầu. Trục nutates giữa θmin = 50 ◦ và θmax = 60 ◦ ˙ trục, φ tỷ lệ đó không phải là không đổi, nhưng chức năng của θ (Eq. 4,36). Chất lượng, chúng tôi có thể phân biệt ba loại chuyển động, có phụ thuộc vào ˙ giá trị của φ tại các điểm quay trong θ. | 4.4. DYNAMICS 119 ỡ 52 e 44 nỉ n V Vmin Figure 4.3 Possible loci for a point on the symmetry axis of the top. The axis nutates between Vmin 50 and Vmax 60 axis at a rate Ộ which is not constant but a function of V Eq. 4.36 . Qualitatively we may distinguish three kinds of motion depending on the values of Ộ at the turning points in V. These in turn depend on the initial conditions and the parameters of the top expressed in a b and Vmin Vmax. If the value of u0 cos V at which Ộ vanishes is within the range of nutation then the precession will be in different directions at Vmin and Vmax and the motion is as in Fig. 4.3a. On the other hand if V cos-1 b a 2 ớmin ớmax the precession will always be in the same direction although it will speed up and slow down. We then get a motion as in Fig. 4.3b. Finally it is possible that cos Vmin b a so that the precession stops at the top as in Fig. 4.3c. This special case is of interest because if the top s axis is held still at an angle to the vertical and then released this is the motion we will get. Exercises 4.1 Prove the following properties of matrix algebra a Matrix multiplication is associative A B C A B C. b A-BB T Bt At where AT is the transpose of A that is AT ij Aji. c If A-1 and B-1 exist A B -1 B-1 A-1. d The complex conjugate of a matrix A ij A j is the matrix with every element complex conjugated. The hermitean conjugate Ay is the 120 CHAPTER 4. RIGID BODY MOTION transpose of that Ay A T AT with Ay ij A ị. Show that A B A B and A B y By Ay. 4.2 In section 4.1 we considered reexpressing a vector V ypi Vịềị in terms of new orthogonal basis vectors. If the new vectors are ei 55j Ajêj we can also write ei 52j Ajịẽ j because AT A-1 for an orthogonal transformation. Consider now using a new basis ei which are not orthonormal. Then we must choose which of the two above expressions to generalize. Let èí 52j Ajid j and find the expressions for a ej in terms of ei b V in terms of Vj and c Vi in terms of Vj. Then show d that .