Đang chuẩn bị liên kết để tải về tài liệu:
Behaviour of Electromagnetic Waves in Different Media and Structures Part 14

Đang chuẩn bị nút TẢI XUỐNG, xin hãy chờ

Tham khảo tài liệu 'behaviour of electromagnetic waves in different media and structures part 14', kỹ thuật - công nghệ, cơ khí - chế tạo máy phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả | 378 Behaviour of Electromagnetic Waves in Different Media and Structures We prefer to express physical quantities by laboratory time Xo rather than proper time . To do so we first calculate dt _ 4 0 d Jio O Zo exp 2 o B2 4 . . . . . 61 4 0 exp o B 4 Xo O exp 2 o B2 4 z0 fromEq. 54 . Using integral formula J x2 1 1 2dx cosh 2 x we obtain f _ J 4 0 exp o B2 4 d 0 Jxo2 O exp 2 o B2 4 Zo 2 11 62 4 0 . irXo O 2 11-4 0 Jr- cosh lUi exp o B 4 cosh o B2 4 z0 z0 z0 in getting this result we have assumed that initial laboratory time t 0 corresponds to initial proper time 0 . The distance of electron away from the origin varies with the laboratory time f can be written out according to Eqs. 54 and 58 and the result is B2 4 . 63 dt dt d 4 0 K If we can express the right hand side of this equation by the expression of f then we get the equation describing r changing with laboratory timef. From Eq. 62 after some calculation we can obtain a quadratic equation of exp 0 B2 4 which is exp 2 o B2 4 2exp o B2 4 cosh o B2 4 f 1 . z 2 Ur 2 I J 1X1 _ n -T7 -Lrircosh2 o B2 4 f 0 4 0 4 0 It is easy to solve this equation and the result is exp o B2 4 cosh o B2 4 f . 1 sinh o B2 4 f . 64 4 0 We know that when the electron is stationary 4 0 1 and f .So we should take the in Eq. 64 and Eq. 63 becomes dr _ Zo di Xo 0 cosh o B2 4 f sinh o B2 4 f The Influence of Vacuum Electromagnetic Fluctuations on the motion of Charged Particles 379 This equation can be easily solved and the result is r Zoldf r 0 r t f ------- - 0 Xo 0 cosh o B2 4 f sinh o B2 4 f 2 Zo dexpty o B2 4 J xo O l exp 2y xo O 1 2 ll- I Xq 0 1 r 7 . . ll- I Xq 0 1 . Itan 1 J . exp o B2 4 f J tan . o B2 4 l Xo O 1 L yxo O 1 So the final expression of the electron s distance away from the origin expressed by the laboratory time is r f r 0 2 itan 2 JXo exw o B2 4 t tan 65 o B2 4 l L Xo O 1 Vx 1 which explicitly shows the inward spiral characteristic of the electron s planar motion with a constant magnetic field along its normal .