Đang chuẩn bị liên kết để tải về tài liệu:
Heat Analysis and Thermodynamic Effects Part 10
Đang chuẩn bị nút TẢI XUỐNG, xin hãy chờ
Tải xuống
Tham khảo tài liệu 'heat analysis and thermodynamic effects part 10', kỹ thuật - công nghệ, cơ khí - chế tạo máy phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả | Integral Transform Method Versus Green Function Method in Electron Hadron or Laser Beam - Water Phantom Interaction 259 ểí k dxỊ dx x2 Kij x 0 4 Equation 4 provides a series of positive eigenvalues z j j 6 N and eigenfunctions . X . . . ổ í Ổ Kij x x. of the differential operator 2 I k x -f õx 0x 7 . The eigenfunctions were necessary for solving equation 2 . The solution of equation 4 has the form Kij x x. Al 2Z jự hi k xi mix hl . iY 2Z j-7 hi k xi mix IwJ I 1 J 5 j 6 N Where h. PC and Jo and Yo are the Bessel and Weber functions respectively. After the application of the integral operator Ki x equation 4 becomes -Z2Wi z j t -PiCi dTi x j t Ct f zj t 6 where Ui xj t J T x t Ki x zj dx C Zj x. ỵ __ -1 xl 1 f zj t Cjxj -J f x t Kj x zj dx and C xj is a normalization factor. Here we have 7 C xj fj1 Ki2 x. x j dx . 7 i 0 xt In the same manner one can apply the functions Kk hk y and Kl eị z which satisfy the equations c K hk y h2Ã hk y 0 Jy 8 Ổ2K g z l g 2 K1 g z 0 Cz2 l M l Ì This next gives K g z cos g z h kg sin g z with k being the thermal conductivity and h the heat transfer coefficient . 260 Heat Analysis and Thermodynamic Effects Then the following equation is inferred - X j X Sí t U T. X j X Sí t SỈT X j hk S t dTi Xj qk el t _ f x y z t 9 õt _ Pici Where from it follows T X J qk sl t _ i X o Ị -- I I C Xj C hk C El x 1 yj 2 z3 2 _ _ _ 10 xJ J J T x y z t Kij Xj x Kk qk y Kl sl z dxdydz x -yj j-z3 j In order to eliminate the time parameter t we apply the direct and inverse Laplace transform to equation 9 . If we have like in most cases f x y z t _ f x y z h t - h t - to one can get the solution XXX T x y z t _ 22 j_1k_1l_1 1 1 -yU ej -X t Xj ej qj L - 1 -. q t-to h t -10 X 11 g X j hk sl x Kij X j x x Kk hk y x Kl el z where g X j hk Sl C Xj C hk C Bl x n-1 x 1 yj 2 z3 2 _ _ 12 2 J J J fi x y z t Kij Xj x Kk hk y Kl sl z dxdydz i_0 x -yj j-Ỉ3 1 Y stands here for the thermal diffusivity. We point out that our semi-analytical solution .