Đang chuẩn bị liên kết để tải về tài liệu:
Báo cáo hóa học: " Research Article A Robust Subpixel Motion Estimation Algorithm Using HOS in the Parametric Domain"
Đang chuẩn bị nút TẢI XUỐNG, xin hãy chờ
Tải xuống
Tuyển tập báo cáo các nghiên cứu khoa học quốc tế ngành hóa học dành cho các bạn yêu hóa học tham khảo đề tài: Research Article A Robust Subpixel Motion Estimation Algorithm Using HOS in the Parametric Domain | Hindawi Publishing Corporation EURASIP Journal on Image and Video Processing Volume 2009 Article ID 381673 10 pages doi 10.1155 2009 381673 Research Article A Robust Subpixel Motion Estimation Algorithm Using HOS in the Parametric Domain E. M. Ismaili Aalaoui 1 2 E. Ibn-Elhaj 2 and E. H. Bouyakhf1 1 Faculte des Sciences de Rabat Universite Mohammed V Agdal 4 avenue Ibn Battouta B.P. 1014 RP 10000 Rabat Morocco 2 Department of Telecommunication Institut National des Postes et Telecommunication avenue Allal Al Fassi Madinat El Irfane 10000 Rabat Morocco Correspondence should be addressed to E. M. Ismaili Aalaoui ismailimehdi@gmail.com Received 28 April 2008 Accepted 24 October 2008 Recommended by Simon Lucey Motion estimation techniques are widely used in todays video processing systems. The most frequently used techniques are the optical flow method and phase correlation method. The vast majority of these algorithms consider noise-free data. Thus in the case of the image sequences are severely corrupted by additive Gaussian perhaps non-Gaussian noises of unknown covariance the classical techniques will fail to work because they will also estimate the noise spatial correlation. In this paper we have studied this topic from a viewpoint different from the above to explore the fundamental limits in image motion estimation. Our scheme is based on subpixel motion estimation algorithm using bispectrum in the parametric domain. The motion vector of a moving object is estimated by solving linear equations involving third-order hologram and the matrix containing Dirac delta function. Simulation results are presented and compared to the optical flow and phase correlation algorithms this approach provides more reliable displacement estimates particularly for complex noisy image sequences. In our simulation we used the database freely available on the web. Copyright 2009 E. M. Ismaili Aalaoui et al. This is an open access article distributed under the Creative Commons .