Đang chuẩn bị liên kết để tải về tài liệu:
Báo cáo toán học: "A Note on The Rogers-Fine Identity"
Đang chuẩn bị nút TẢI XUỐNG, xin hãy chờ
Tải xuống
Tuyển tập các báo cáo nghiên cứu khoa học về toán học trên tạp chí toán học quốc tế đề tài: A Note on The Rogers-Fine Identity. | A Note on The Rogers-Fine Identity Jian-Ping Fang Department of Mathematics Huaiyin Teachers College Huaian Jiangsu 223300 P. R. China Department of Mathematics East China Normal University Shanghai 200062 P. R. China fjp7402@163.com Submitted May 29 2006 Accepted Jul 30 2007 Published Aug 9 2007 Mathematics Subject Classihcations 05A30 33D15 33D60 33D05 Abstract In this paper we derive an interesting identity from the Rogers-Fine identity by applying the q-exponential operator method. 1 Introduction and main result Following Gasper and Rahman 7 we write a q o 1 a q n 1 - a 1 - aq 1 - aqn 1 n 1 1 1 b1 ar x t a1 a2 ar q n bs q x A q b1 A q n 1 nqn n-1 2j 1 s r xn. For convenience we take q 1 in this paper. Recall that the Rogers-Fine identity 1 2 6 10 is expressed as follows X n q n _n V1 n q n qnr q n 1 - arq2n _ 2_ n 0H q nT n 0 H q n T q n 1 T q 1 This identity 1 is one of the fundamental formulas in the theory of the basic hypergeometric series. In this paper we derive an interesting identity from 1 by applying the q-exponential operator method. As application we give an extension of the terminating very-well-poised 6 5 summation formula. The main result of this paper is Jian-Ping Fang supported by Doctorial Program of ME of China 20060269011. THE ELECTRONIC JOURNAL OF COMBINATORICS 14 2007 N17 1 Theorem 1.1. Let a_1 a0 a1 a2 a2t 2 be complex numbers a2i I 1 with i 0 1 2 t 1 then for any non-negative integer M we have yX q M c a2 a4 a2t 2 q n Tn n 0Ua1 3 a2t i q n XX q M q m q1-M P q m 1 - 2 . m 0 H q m T q m 1 x TT1 a2j q m y q m q1 m p b c q mi y 0 a q m m 0 q q1-Mt A q1-m c q mi 0 mi 2 m . m2 mi I 1 q q1 m a2i-3 a2i-1 a q q . 2 i i q q1-m a2i q1 m a2i-2 a2i-3 qLt 1 2 where t 1 0 1 2 1 c a0 and b a_1. 2 The proof of the theorem and its application Before our proof let s first make some preparations. The q-differential operator Dq and q-shifted operator q see 3 4 8 9 acting on the variable a are defined by Dq f a g f a f aq and q f a g f aq a Rogers 9 first .