Đang chuẩn bị liên kết để tải về tài liệu:
modern cryptography theory and practice wenbo mao phần 4
Đang chuẩn bị nút TẢI XUỐNG, xin hãy chờ
Tải xuống
Cuốn sách này có cách tiếp cận adifferent giới thiệu mật mã: tofit quan tâm nhiều hơn nữa cho các khía cạnh ứng dụng của mật mã. Nó giải thích tại sao "sách giáo khoa mật mã" isonly tốt trong một thế giới lý tưởng, nơi dữ liệu ngẫu nhiên và kẻ xấu hoạt động nicely.It tiết lộ | Equation 6.5.2 ì3-l 2 _ I inocỊ pj Euler s Criterion provides a criterion to test whether or not an element in is a quadratic residue if congruence 6.5.1 is satisfied then xEQRp otherwise 6.5.2 is satisfied and x QNRp. Letn be a composite natural number with its prime factorization as Equation 6.5.3 Ei Eo t- n pf Po Pfe Then byTheorem 6.8 is isomorphic to . Since isomorphism preserves arithmetic we have . Theorem 6.14 Let n be a composite integer with complete factorization in 6.5.3 . Then x c QRnif and only if X mod ple QR.n i . Ti and hence if and only if x mod p i c QRpifor prime Pi with i 1 2 k o r z Therefore if the factorization of n is known given the quadratic residuosity of x modulon can be decided by deciding the residuosity of x mod p for each prime p n. The latter task can be done by testing Euler s criterion. However if the factorization of n is unknown deciding quardratic residuosity modulo n is a nontrivial task. Definition 6.2 Quadratic Residuosity QR Problem INPUT n a composite number X e z . OUTPUT YESif x e QRn. The QRP is a well-known hard problem in number theory and is one of the main four algorithmic problems discussed by Gauss in his Disquisitiones Arithmeticae 119 . An efficient solution for it would imply an efficient solution to some other open problems in number theory. In Chapter 14 we will study a well-known public-key cryptosystem named the Goldwasser-Micali cryptosystem that cryptosystem has its security based on the difficult for deciding the QRP. CombiningTheorem 6.12 and Theorem 6.14 we can obtain . Theorem 6.15 1 Let n be a composite integer with k 1 distinct prime factors. Then exactly - fraction of . . . V . . . n elements in are quadratic residues modulo n. Thus for a composite number n an efficient algorithm for deciding quadratic residuosity modulo . . r . 7 n will provide an efficient statistic test on the proportion of quadratic residues in and hence byTheorem 6.15 provide an efficient algorithm for answering the question