Đang chuẩn bị liên kết để tải về tài liệu:
Cơ sở kỹ thuật siêu cao tần - Chương 4
Đang chuẩn bị nút TẢI XUỐNG, xin hãy chờ
Tải xuống
Tài liệu tham khảo bài giảng Cơ sở kỹ thuật siêu cao tần ( Nghiêm Xuân Anh ) gồm 4 chương - Chương 4 Phân tích mạch cao tần | Chương 4 Phân tích mạch cao tần Các mạch điện hoạt động ở tần số thấp ở đó kích thước mạch tưong đối nhỏ so vói bước sóng có thể được xem là liên kết các phần tử tập trung tích cực và thụ động có điện áp và dòng điện được xác định tại bất cứ điểm nào trên mạch. Trong tình huống này các kích thước mạch đủ nhỏ sao cho sự thay đổi về pha nhỏ không đáng kể giữa một điểm này vói một điểm khác trong mạch. Ngoài ra các trường có thể được xem như là các trường TEM hỗ trợ bởi hai hay nhiều dây dẫn. Điều này dẫn tói một loại nghiệm cận tĩnh điện cho các phưong trình Maxwell và các định luật Kirchhoff cho điện áp và dòng điện cùng các khái niệm về trở kháng trong lý thuyết mạch. Như bạn đọc đã biết có nhiều kỹ thuật mạnh và hữu ích cho phân tích các mạch điện tần số thấp. Nói chung các kỹ thuật này không thể áp dụng trực tiếp cho các mạch cao tần. Tuy nhiên mục đích của chưong này là chỉ ra các khái niệm về mạch và mạng có thể được mở rộng như thế nào để giải quyết nhiều bài toán phân tích và thiết kế cao tần được quan tâm trong thực tế. Lý do chính để làm điều này là ta sẽ dễ dàng hon khi áp dụng các ý tưởng đon giản và trực giác của phân tích mạch cho một bài toán cao tần so với việc giải các phưong trình Maxwell cho cùng bài toán. Phân tích trường cho ta nhiều thông tin về bài toán đang được xem xét hon những gì ta thực sự muốn hoặc cần. Tức là do nghiệm của các phưong trình Maxwell cho một bài toán đã cho là hoàn chỉnh nó cho ta các trường điện và từ tại mọi điểm trong không gian. Nhưng thường chúng ta chỉ quan tâm đến điện áp hay dòng điện tại các cực công suất chảy qua thiết bị hay một số đại lượng toàn cục khác tưong phản vói mô tả chi tiết về đáp ứng tại mọi điểm trong không gian. Một lý do khác cho việc sử dụng phân tích mạch hay mạng là vì khi đó sẽ rất dễ sửa đổi bài toán gốc hoặc kết hợp một số phần tử khác nhau lại và tìm đáp ứng mà không cần phân tích chi tiết hành vi của mỗi phần tử khi kết hợp với các lân cận của nó. Phân tích trường sử dụng các phưong trình .