Đang chuẩn bị liên kết để tải về tài liệu:
Giáo trình phân tích khả năng vận dụng cấu tạo phương thức sử dụng toán tử divergence p1

Đang chuẩn bị nút TẢI XUỐNG, xin hãy chờ

Tham khảo tài liệu 'giáo trình phân tích khả năng vận dụng cấu tạo phương thức sử dụng toán tử divergence p1', kỹ thuật - công nghệ, điện - điện tử phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả | Giáo trình phân tích khả năng vận dụng cấu tạo phương thức sử dụng toán tử divergence Nếu F là trường chất lỏng thì thông lượng chính là lượng chất lỏng đi qua mặt cong S theo hướng pháp vectơ n trong một đơn vị thời gian. Cho trường vectơ D F với F X Y Z . Trường vô hướng dX dY dZ div F 7 dx dy dz 6.4.2 gọi là divergence nguồn của trường vectơ F. Ví du Cho trường vectơ F xy yz zx và điểm A 1 1 -1 Ta có div F y z x và div F A 1 1 - 1 2 Đỉnh lý Cho F G là các trường vectơ và u là trường vô hướng. Divergence có các tính chất sau đây. 1. div F G div F div G 2. div u F u div F grad u F Chứng minh Suy ra từ định nghĩa 6.4.2 và các tính chất của đạo hàm riêng. Giả sử Q là miền đóng nằm gọn trong miền D và có biên là mặt cong kín S trơn từng mảnh định hướng theo pháp vectơ ngoài n. Khi đó công thức Ostrogradski được viết lại ở dạng vectơ như sau. f F n dS 111 divFdV S a Chọn Q là hình cầu đóng tâm A bán kính . Từ công thức 6.4.3 và định lý về trị trung bình của tích phân bội ba suy ra. div F A lim 1 H F n dS 0 V M S Theo công thức trên nguồn của trường vectơ F tại điểm A là lượng chất lỏng đi ra từ điểm A theo hướng của trường vectơ F. 6.4.3 6.4.4 Cho trường vectơ D F và điểm A e D. Nếu div F A 0 thì điểm A gọi là điểm nguồn. Nếu div F A 0 thì điểm A gọi là điểm thủng. Ví du Cho trường vectơ F xy yz zx Ta có div F y z x div F 1 0 0 1 0 điểm 1 0 0 là điểm nguồn div F -1 0 0 -1 0 điểm -1 0 0 là điểm thủng ương 6. Lý Thuyết Trường Đ5. Hoàn lưu Cho trường vectơ D F và đường cong r kín trơn từng khúc nằm gọn trong miền D định hướng theo vectơ tiếp xúc T. Tích phân đường loại hai K J F T ds IXdx Ydy Zdz 3.5.1 r r gọi là hoàn lưu của trường vectơ F dọc theo đường cong kín r. Nếu F là trường chất lỏng thì hoàn lưu là công dịch chuyển một đơn vị khối lượng chất lỏng dọc theo đường cong r theo hướng vectơ T. Cho trường vectơ D F với F X Y Z . Trường vectơ dz dYY.rax azY.t3Y ax rot F a aZ I aZ aZ J aZ aZ k 6.5.2 gọi là rotation xoáy của trường vectơ F. Ví du Cho trường vectơ F xy yz