Đang chuẩn bị liên kết để tải về tài liệu:
OpenCVTutorial - Part III

Đang chuẩn bị nút TẢI XUỐNG, xin hãy chờ

Tham khảo tài liệu 'opencvtutorial - part iii', khoa học xã hội, thư viện thông tin phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả | OpenCV Tutorial Part 3 Image Correlation Gavin S Page gsp8334@cs.rit.edu Tasks After learning to work with images it is important to learn some of the accessory functions OpenCV has to offer. This tutorial will discuss a simple image correlation example. Steps Performed Load an Image (Explanation Skipped) Convert to Gray Extract Template Region Apply Match Functions At this point loading an image and converting it to grayscale should be a simple task and can be copied from past tutorials. Gavin S Page gsp8334@cs.rit.edu Extract Template Region //define the starting point and size of rectangle int xVal = 1145; int yVal = 890; int neighLength = 25; CvRect rect = cvRect(xVal,yVal,neighLength,neighLength); //create the template and extract it from the source image CvMat* tplate = cvCreateMat(neighLength, neighLength, CV_8UC1); cvGetSubRect(imG, tplate, rect ); Determine the starting point and the size of the region and create the CvRect. Specify Region Use cvGetSubRect to copy the template from the region. Here the template region is specified and extracted. Gavin S Page gsp8334@cs.rit.edu Use Template Match //specify the size needed by the match function int resultW = imG->width - tplate->width + 1; int resultH = imG->height - tplate->height +1; //create each of the result images IplImage* result0 = cvCreateImage(cvSize(resultW, resultH), IPL_DEPTH_32F, 1); IplImage* result1 = cvCreateImage(cvSize(resultW, resultH), IPL_DEPTH_32F, 1); IplImage* result2 = cvCreateImage(cvSize(resultW, resultH), IPL_DEPTH_32F, 1); IplImage* result3 = cvCreateImage(cvSize(resultW, resultH), IPL_DEPTH_32F, 1); IplImage* result4 = cvCreateImage(cvSize(resultW, resultH), IPL_DEPTH_32F, 1); IplImage* result5 = cvCreateImage(cvSize(resultW, resultH), IPL_DEPTH_32F, 1); //apply each of the matching techniques cvMatchTemplate(imG, tplate, result0, CV_TM_SQDIFF); cvMatchTemplate(imG, tplate, result1, CV_TM_SQDIFF_NORMED); cvMatchTemplate(imG, tplate, result2, CV_TM_CCORR); cvMatchTemplate(imG, tplate, result3, CV_TM_CCORR_NORMED); cvMatchTemplate(imG, tplate, result4, CV_TM_CCOEFF); cvMatchTemplate(imG, tplate, result5, CV_TM_CCOEFF_NORMED); The image targets for the result of the match function have to be of size W-w+1×H-h+1 and of type 32-bit single channel floating point. Create Result Images Apply each of the match techniques for the example. This slide documents the creation of the target images and the usage of the cvMatchTemplate function. Gavin S Page gsp8334@cs.rit.edu Original Image and Template The original, grayscale image with template. Notice the region from which the template was extracted is labeled in the image. Gavin S Page gsp8334@cs.rit.edu Poor Results CCOEFF CCORR SQDIFF These particular methods did not demonstrate good results. Gavin S Page gsp8334@cs.rit.edu Good Results Notice the high values on the circular letters on the sign CCOEFF_NORMED Gavin S Page gsp8334@cs.rit.edu Good Results Notice the high values on the circular letters on the sign CCORR_NORMED Gavin S Page gsp8334@cs.rit.edu Good Results Notice the low values on the circular letters on the sign SQDIFF_NORMED Gavin S Page gsp8334@cs.rit.edu Final This tutorial illustrated a simple example of image correlation. It showed that the normalized techniques exhibited better results Gavin S Page gsp8334@cs.rit.edu

TÀI LIỆU LIÊN QUAN