Đang chuẩn bị liên kết để tải về tài liệu:
Đề thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 12 năm học 2019-2020 - Sở Giáo dục và Đào tạo Yên Bái
Đang chuẩn bị nút TẢI XUỐNG, xin hãy chờ
Tải xuống
"Đề thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 12 năm học 2019-2020 - Sở Giáo dục và Đào tạo Yên Bái" là tài liệu tham khảo hữu ích cho các bạn học sinh chủ động củng cố, nâng cao kiến thức tại nhà. | SỞ GIÁO DỤC VÀ ĐÀO TẠO YÊN BÁI ĐỀ THI CHỌN ĐỘI TUYỂN HỌC SINH GIỎI CẤP TỈNH NĂM HỌC 2019 2020 MÔN THI TOÁN Thời gian 180 phút Không kể thời gian phát đề ĐÈ CHÍNH THỨC Câu I. mx 9 1. Cho hàm số y . Tìm tất cả các giá trị của tham số m để hàm số nghịch biến trên khoảng x m 1 . 2. Cho hàm số f x x3 6 x 2 9 m x 2m 2. Tìm tất cả các giá trị của tham số m để hàm số g x f x có đúng 5 điểm cực trị. Câu II. Từ tập hợp tất cả các số tự nhiên có 5 chữ số mà các chữ số đều khác 0 lấy ngẫu nhiên một số. Tính xác suất để trong số tự nhiên lấy ra được chỉ có mặt ba chữ số khác nhau. Câu III. y x y x y 2 x 2 2 x 1 Giải hệ phương trình sau trên tập số thực xy 5 y 7 x 7 y 4 6 3 xy y 1 2 2 2 Câu IV. Cho hình chóp S.ABC có đáy là ABC vuông tại B AB a 3 ACB 600 hình chiếu vuông góc của S lên mặt phẳng ABC là trọng tâm của tam giác ABC gọi E là trung điểm cạnh AC biết góc giữa SE và mặt phẳng đáy bằng 300. a Tính theo a thể tích khối chóp S.ABC và khoảng cách từ C đến mặt phẳng SAB . b Tính góc giữa hai mặt phẳng SAC và ABC . Câu V. Cho tam giác ABC nhọn nội tiếp đường tròn O có đường cao AD D BC . Kẻ DE DF lần lượt vuông góc với AB AC E AB F AC . BF CE I K BF DE L CE DF hai điểm M N lần lượt là trung điểm của AD và AI. Chứng minh rằng a Đường thẳng KL song song với đường thẳng BC. b M N O thẳng hàng. Câu VI. Cho các số thực dương x y z thoả mãn điều kiện 3 x y z x2 y2 z2 2 xy. Tìm giá trị 20 20 nhỏ nhất của biểu thức P x y z. x z y 2 Câu VII. Tìm tất cả các số nguyên dương n sao cho n 4 n3 1 là số chính phương. -------------- HẾT -------------- Trang 1 11 Tải tài liệu miễn phí https vndoc.com HƯỚNG DẪN GIẢI CHI TIẾT Câu I. mx 9 1. Cho hàm số y . Tìm tất cả các giá trị của tham số m để hàm số nghịch biến trên khoảng x m 1 . 2. Cho hàm số f x x3 6 x 2 9 m x 2m 2. Tìm tất cả các giá trị của tham số m để hàm số g x f x có đúng 5 điểm cực trị. Lời giải 1. Tập xác định D m2 9 Ta có y x m 2 Hàm số nghich biến trên khoảng 1 y 0 x 1 m 2 9 0 3 m 3 3 m 1 m 1 m 1 Vậy với 3 m 1 thì hàm số nghịch .