Đang chuẩn bị liên kết để tải về tài liệu:
Đồ án tốt nghiệp Thuật toán Phân cụm dữ liệu nửa giám sát
Đang chuẩn bị nút TẢI XUỐNG, xin hãy chờ
Tải xuống
Trong vài thập niên gần đây, cùng với sự thay đổi và phát triển không ngừng của ngành công nghệ thông tin nói chung và trong các ngành công nghệ phần cứng, phân mềm, truyền thông và hệ thống các dữ liệu phục vụ trong các lĩnh vực kinh tế - xã hội nói riêng. Thì việc thu thập thông tin cũng như nhu cầu lưu trữ thông tin càng ngày càng lớn. Bên cạnh đó việc tin học hoá một cách ồ ạt và nhanh chóng các hoạt động sản xuất, kinh doanh cũng như nhiều lĩnh vực hoạt động khác đã tạo ra. | Đồ án tốt nghiệp Thuật toán Phân cụm dữ liệu nửa giám sát Đồ án tốt nghiệp Thuật toán Phân cụm dữ liệu nửa giám sát . Đồ án tốt nghiệp Đại học hệ chính quy Thuật toán Phân cụm dữ liệu nửa giám sát MỤC ĐÍCH CỦA ĐỀ TÀI Công việc đọc và tìm hiểu đề tài nhằm những muc đích sau đây: • Tìm hiểu qua về khai phá dữ liệu (Data mining). • Tìm hiểu qua về một số thuật toán phân cụm dữ liệu không giám sát • Trên lền tảng lý thuyết về khai phá dữ liệu và một số thuật toán phân cụm không giám sát tiến tới đi sâu vào tìm hiểu, phân tích, đánh giá một số thuật toán của phương pháp phân cụm dữ liệu nửa giám sát.( Thuật toán Seeded-Kmeans và Constrained-Kmeans) • Xây dựng một chương trình demo, mô phỏng hoạt động của phương pháp phân cụm dữ liệu nửa giám sát. 1 Đồ án tốt nghiệp Đại học hệ chính quy Thuật toán Phân cụm dữ liệu nửa giám sát GIỚI THIỆU Trong vài thập niên gần đây, cùng với sự thay đổi và phát triển không ngừng của ngành công nghệ thông tin nói chung và trong các ngành công nghệ phần cứng, phân mềm, truyền thông và hệ thống các dữ liệu phục vụ trong các lĩnh vực kinh tế - xã hội nói riêng. Thì việc thu thập thông tin cũng như nhu cầu lưu trữ thông tin càng ngày càng lớn. Bên cạnh đó việc tin học hoá một cách ồ ạt và nhanh chóng các hoạt động sản xuất, kinh doanh cũng như nhiều lĩnh vực hoạt động khác đã tạo ra cho chúng ta một lượng dữ liệu lưu trữ khổng lồ. Hàng triệu Cơ sở dữ liệu đã được sử dụng trong các hoạt động sản xuất, kinh doanh, quản lí., trong đó có nhiều Cơ sở dữ liệu cực lớn cỡ Gigabyte, thậm chí là Terabyte. Sự bùng nổ này đã dẫn tới một yêu cầu cấp thiết là cần có những kĩ thuật và công cụ mới để tự động chuyển đổi lượng dữ liệu khổng lồ kia thành các tri thức có ích. Từ đó, các kĩ thuật Khai phá dữ liệu đã trở thành một lĩnh vực thời sự của nền Công nghệ thông tin thế giới hiện nay. Một vấn đề được đặt ra là phải làm sao trích chọn được những thông tin có ý nghĩa từ tập dữ liệu lớn