Đang chuẩn bị liên kết để tải về tài liệu:
Conservation tillage and residue management towards low greenhouse gas emission; storage and turnover of natural organic matter in soil under sub-tropical ecosystems: A review
Đang chuẩn bị nút TẢI XUỐNG, xin hãy chờ
Tải xuống
Soil organic carbon (SOC) dynamics in croplands is a crucial component of global carbon (C) cycle. Depending on local environmental conditions and management practices, typical C input is generally required to reduce or reverse C loss in agricultural soils. Changes in the soil organic carbon (SOC) stock are determined by the balance between the carbon input from organic materials and the output from the decomposition of soil C. The fate of SOC in cropland soils plays a significant role in both sustainable agricultural production and climate change mitigation. Tillage systems can influence C sequestration by changing aggregate formation and C distribution within the aggregate. Results showed that the soil organic carbon (SOC) stock in bulk soil was 40.2-51.1% higher in the 0.00-0.05 m layer and 11.3-17.0% lower in the 0.05-0.20 m layer in NT system no-tillage without straw (NT-S) and with straw (NT+S), compared to the MP system moldboard plow without straw (MP-S) and with straw (MP+S), respectively. Residue incorporation caused a significant increment of 15.65% in total water stable aggregates in surface soil (0– 15 cm) and 7.53% in sub-surface soil (15–30 cm). | Conservation tillage and residue management towards low greenhouse gas emission; storage and turnover of natural organic matter in soil under sub-tropical ecosystems: A review