Đang chuẩn bị liên kết để tải về tài liệu:
Giáo trình Lý thuyết mật mã và an toàn thông tin: Phần 2 - Phan Đình Diệu

Đang chuẩn bị nút TẢI XUỐNG, xin hãy chờ

Giáo trình "Lý thuyết mật mã và an toàn thông tin" được soạn để phục vụ cho việc học tập của sinh viên theo học ngành Công nghệ thông tin. Trong phần 2 của giáo trình này sẽ trình bày nội dung qua 4 chương tiếp theo: chương 4 các hệ mật mã khóa công khai, chương 5 bài toán xác nhận và chữ ký điện tử, chương 6 các sơ đồ xưng danh và xác nhận danh tính, chương 7 vấn đề phân phối khóa và thỏa thuận khóa. | CH¦¥NG IV C¸c hÖ mËt m· kho¸ c«ng khai 4.1. Giíi thiÖu më ®Çu. 4.1.1. Sù ra ®êi cña mËt m· kho¸ c«ng khai. Trong ch−¬ng I ta ®· giíi thiÖu qua ®Þnh nghÜa cña c¸c kh¸i niÖm hÖ mËt m· kho¸ ®èi xøng vµ hÖ mËt m· kho¸ c«ng khai. Sù ra ®êi cña kh¸i niÖm hÖ mËt m· kho¸ c«ng khai lµ mét tiÕn bé cã tÝnh chÊt b−íc ngoÆt trong lÞch sö mËt m· nãi chung, g¾n liÒn víi sù ph¸t triÓn cña khoa häc tÝnh to¸n hiÖn ®¹i. Ng−êi ta cã thÓ xem thêi ®iÓm khëi ®Çu cña b−íc ngoÆt ®ã lµ sù xuÊt hiÖn ý t−ëng cña W. Diffie vµ M.E. Hellman ®−îc tr×nh bµy vµo th¸ng s¸u n¨m 1976 t¹i Héi nghÞ quèc gia hµng n¨m cña AFIPS (Hoa kú) trong bµi Multiuser cryptographic techniques. Trong bµi ®ã, cïng víi ý t−ëng chung, hai t¸c gi¶ còng ®· ®−a ra nh÷ng thÝ dô cô thÓ ®Ó thùc hiÖn ý t−ëng ®ã, vµ mÆc dï c¸c thÝ dô ch−a cã ý nghÜa thuyÕt phôc ngay ®èi víi t¸c gi¶, th× ý t−ëng vÒ c¸c hÖ mËt m· kho¸ c«ng khai còng ®· rÊt râ rµng vµ cã søc hÊp dÉn ®èi víi nhiÒu ng−êi. Vµ ngay sau ®ã, c«ng viÖc t×m kiÕm nh÷ng thÓ hiÖn cô thÓ cã kh¶ n¨ng øng dông trong thùc tÕ ®· b¾t ®Çu thu hót sù quan t©m cña nhiÒu chuyªn gia. Mét n¨m sau, n¨m 1977, R.L. Rivest, A. Shamir vµ L.M. Adleman ®Ò xuÊt mét hÖ cô thÓ vÒ mËt m· kho¸ c«ng khai mµ ®é an toµn cña hÖ dùa vµo bµi to¸n khã “ph©n tÝch sè nguyªn thµnh thõa sè nguyªn tè”, hÖ nµy vÒ sau trë thµnh mét hÖ næi tiÕng vµ mang tªn lµ hÖ RSA, ®−îc sö dông réng r·i trong thùc tiÔn b¶o mËt vµ an toµn th«ng tin. Còng vµo thêi gian ®ã, M.O. Rabin còng ®Ò xuÊt mét hÖ mËt m· kho¸ c«ng khai dùa vµo cïng bµi to¸n sè häc khã nãi trªn. Liªn tiÕp sau ®ã, nhiÒu hÖ mËt m· khãa c«ng khai ®−îc ®Ò xuÊt, mµ kh¸ næi tiÕng vµ ®−îc quan t©m nhiÒu lµ c¸c hÖ: hÖ McEliece ®−îc ®−a ra n¨m 1978 dùa trªn ®é NP-khã cña bµi to¸n gi¶i m· ®èi víi c¸c hÖ m· cyclic tuyÕn tÝnh, hÖ MerkleHellman dùa trªn tÝnh NP- ®Çy ®ñ cña bµi to¸n xÕp ba l«(knapsack problem), hÖ mËt m· næi tiÕng ElGamal dùa trªn ®é khã cña bµi to¸n l«garit rêi r¹c, hÖ nµy vÒ sau ®−îc më réng ®Ó ph¸t triÓn nhiÒu 92 hÖ t−¬ng tù dùa trªn ®é khã cña c¸c .