tailieunhanh - Đề tài: Vận dụng phép duy vật biện chứng vào nghiên cứu toán học
Khi nghiên cứu về sự vật, hiện tượng, mỗi chúng ta có những phương pháp nghiên cứu khác nhau dựa vào cách nhìn nhận sự vật hiện tượng dưới nhiều góc độ khác nhau. Tuy nhiên, dù nhìn nhận sự, vật hiện tượng ở góc độ nào đi nữa, chúng ta cũng cần phải nắm được bản chất của vấn đề. Đó là chìa khóa để chúng ta có những đánh giá chính xác về đối tượng mà chúng ta đang nghiên cứu. Trong thực tế, mỗi sự vật, hiện tượng đều vận động một cách liên tục, không ngừng. Nếu chúng ta chỉ xét sự. | Như vậy, vận dụng phép biện chứng duy vật vào nghiên cứu toán học nghĩa là trước một vấn đề toán học, ta phải có cách nhìn biện chứng. Cần phải phân tích các yếu tố. Xem xét các yếu tố theo các mối quan hệ biện chứng với nhau. Trên cơ sở đó, xây dựng nên cách thức tiếp cận và hướng đi phù hợp. Khi xem xét một đối tượng toán học, điều quan trọng là phải hình thành cách nhìn biện chứng. Nhìn trong mối quan hệ trong - ngoài, nhìn trong sự tách biệt, nhìn trong sự tổng hợp, nhìn trọng sự cụ thể, nhìn trong sự tổng quát, nhìn trong sự tương ứng Kết hợp với lối tư duy biện chứng, ta có thể đạt được những thành quả nhất định trong quá trình nghiên cứu của mình. Như trên, việc xem xét một tam giác vuông đã đưa đến giả định cho tam giác bất kì, việc xem xét đoạn thẳng như là một tam giác có 2 đỉnh trùng nhau, một tam giác như là một tứ giác có 1 cạnh bằng 0 đều cho ta những hướng đi tốt. Việc xây dựng và giải quyết vấn đề đều dựa vào phương pháp duy vật biện chứng. Mà cụ rõ nét nhất chính là dựa vào mối liên hệ phổ biến khi xét các yếu tố toán học với quan hệ ràng buộc, chặt chẽ với nhau. Trong đó nổi lên các mối liên hệ giữa
đang nạp các trang xem trước