tailieunhanh - Giáo án: Các trường hợp bằng nhau của tam giác vuông - Hình học 7 - GV.Đ.T.Trung
Về kiến thức, học sinh nắm được các bước chứng minh tam gác vuông bằng nhau, biết vận dụng các trường hợp bằng nhau của tam giác vuông chứng minh 2 góc, 2 cạnh bằng nhau. | GIÁO ÁN TOÁN 7 – HÌNH HỌC Tuần 23 Tiết 41 §8 CÁC TRƯỜNG HỢP BẰNG NHAU CỦA TAM GIÁC VUÔNG I. Mục tiêu: Nắm được các trường hợp bằng nhau của tam giác vuông. Aùp dụng định lý Pytago để chứng minh trường hợp cạnh huyền _ cạnh góc vuông. Biết vận dụng để chứng minh các đoạn thẳng bằng nhua, các góc bằng nhau. Rèn luyện khả năng phân tích, trình bày lời giải. II. Phương pháp: Đặt và giải quyết vấn đề, phát huy tính sáng tạo của HS. Đàm thoại, hỏi đáp. III: Tiến trình dạy học: 1. Các hoạt động trên lớp: Hoạt động của thầy Hoạt động của trò Ghi bảng Hoạt động 1: Giáo viên đưa bảng phụ có ba cặp tam giác vuông bằng nhau. Yêu cầu học sinh kí hiệu các yếu tố bằng nhau để hai tam giác bằng nhau theo trường hợp c–g–c; g–c–g; cạnh huyền – góc nhọn. I)Các trường hợp bằng nhau đã biết của hai tam giác vuông. Hoạt động 2: Giáo viên nêu vấn đề: Nếu hai tam giác vuông có cạnh huyền và một cạnh góc vuông của tam giác này bằng cạnh huyền và một cạnh góc vuông của tam giác kia thì hai tam giác có bằng nhau không? Giáo viên hướng dẫn học sinh vẽ hai tam giác vuông thỏa mãn điều kiện trên. Hỏi: từ giả thuyết có thể tìm thêm yếu tố nào bằng nhau nữa không? Vậy ta có thể chứng minh được hai tam giác bằng nhau không? HS trả lời. II) Trường hợp bằng nhau cạnh huyền – cạnh góc vuông: GT ABC ( =900), DEF ( = 900) BC = EF ; AC = DF KL Ta có: ABC ( = 900) BC2 = AB2 + AC2 AB2 = BC2 – AC2 DEF ( = 900) ED2 = EF2 – DF2 Mà BC = EF (gt); AC = DF (gt) Vậy AB = ED ABC = DEF (c–c–c) Hoạt động 3: Củng cố – dặn dò Học sinh làm ?2 bằng hai cách Cách 2: Xét AHB và AHC có: = = 900 (gt) AB = AC (gt) = ( ABC cân tại A) Vậy AHB = AHC (cạnh huyền – góc nhọn) Giáo viên hỏi: Ta suy ra được những đoạn thẳng nào bằng nhau? Những góc nào bằng nhau? ?2 Cách 1: Xét AHB và AHC có: = = 900 (gt) AB = AC (gt) AH cạnh chung Vậy AHB = AHC (cạnh huyền – cạnh góc vuông) 2. Hướng dẫn về nhà: Bài tập 63, 64 SGK/136. IV. Rút kinh nghiệm tiết dạy: Tuần 23 Tiết 42 LUYỆN TẬP I. Mục tiêu: Áp dụng các trường hợp bằng nhau của hai tam giác vuông vào việc chứng minh các đoạn thẳng bằng nhau, các góc bằng nhau. Chuẩn bị cho tiết thực hành tiếp theo. II. Phương pháp: Đặt và giải quyết vấn đề, phát huy tính sáng tạo của của HS. Đàm thoại, hỏi đáp. III: Tiến trình dạy học: 1. Các hoạt động trên lớp: Hoạt động của thầy Hoạt động của trò Ghi bảng Hoạt động 1: Luyện tập. Bài 65 SGK/137: Giáo viên nêu câu hỏi, học sinh dưới lớp trả lời. Muốn chứng minh AH=AK ta xét hai tam giác nào? ABH và ACK có những yếu tố nào bằng nhau? Hai tam giác này bằng nhau theo trường hợp nào? Muốn chứng minh AI là phân giác của ta phải chứng minh điều gì? Ta xét hai tam giác nào? Hai tam giác này bằng nhau theo trường hợp nào? Bài 66 SGK/137: Học sinh nêu rõ bằng nhau theo trường hợp nào? Bài 65 SGK/137: Học sinh đọc đề, vẽ hình, ghi giả thuyết, kết luận. Một học sinh lên bảng lập sơ đồ phân tích đi lên. Học sinh trình bày lời giải. ( = ) Học sinh trình bày lời giải. Học sinh đứng tại chỗ nêu hai tam giác bằng nhau. Bài 65 SGK/137: a/ Xét ABH và ACK có: AB = AC (gt) : chung = = 900 Vậy ABH = ACK (cạnh huyền – góc nhọn) AH = AK (cạnh tương ứng) b/ Xét AIK và AIH có: = = 900 AI: cạnh chung AH = AK (gt) Vậy AIH = AIK (cạnh huyền – cạnh góc vuông) = (góc tương ứng) AI là phân giác của Bài 66 SGK/137: 2. Hướng dẫn về nhà: Làm bài 66 SGK/137 Chuẩn bị mỗi tổ: 3 cọc tiêu dài khoảng 1m2, 1 giác kế, 1 sợi dây dài 10 m, 1 thước đo. IV. Rút kinh nghiệm tiết dạy:
đang nạp các trang xem trước