tailieunhanh - Đề tự luyện thi đại học môn Toán số 07

Tài liệu tham khảo và tuyển tập các Đề tự luyện thi thử đại học môn toán học năm 2013 của GV Phan Huy Khải. Chúc các bạn ôn tập tốt và đạt kết quả cao trong các kỳ thi tuyển sinh năm 2013. | Khóa học Luyện đề thi đại học môn Toán - Thầy Phan Huy Khải Đề thi tự luyện số 07 ĐỀ TỰ LUYỆN THI THỬ ĐẠI HỌC SỐ 07 MÔN TOÁN Giáo viên PHAN HUY KHẢI Đây là đề thi đi kèm với bài giảng Luyện đề số 07 thuộc khóa học Luyện đề thi đại học môn Toán - Thầy Phan Huy Khải tại website . Để đạt được kết quả cao trong kì thi đại học sắp tới Bạn cần tự mình làm trước đề sau đó kết hợp xem cùng với bài giảng này. Thời gian làm bài 180phút I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH 7 điểm Câu I. 2 điểm Cho đường cong y 2m m4 Cm 1. Khảo sát và vẽ đồ thị khi m 1. 2. Tìm m để Cm có ba cực trị và các điểm cực trị là ba đỉnh của một tam giác đều. Câu II. 2 điểm 1. Giải phương trình cos3x COS2X 2 s inx -2 0 2. Giải phương trình x x-2 V4-X x2 -6x ll Câu III. 1 điểm Tính diện tích hình phẳng giới hạn bởi các đường y x2 y y y 4 X X Câu IV. 1 điểm Trong mặt phẳng P vẽ đường tròn đường kính AB 2R. Trên AB lấy điểm H. Từ H kẻ đường vuông góc với AB cắt nửa đường tròn trên t ại M. Gọi I là trung điểm của HM. Nửa đường thẳng vuông góc với P tại I cắt mặt cầu đường kính AB t ại K. 1. Chứng minh rằng khi H di động thì mặt phẳng KAB t ạo với P một góc không đổi. 2. Chứng minh rằng khi H di động thì tâm S mặt cầu ngoại tiếp tứ diện ABKI nằm trên một đường thẳng cố định. Câu V. 1 điểm Cho 3 số thực x y z thuộc 0 2 và thỏa mãn điều kiện x y z 3. Tìm giá trị lớn nhất của biểu thức P X2 y2 z2 II. PHẦN RIÊNG 3 0 điểm . Thí sinh chỉ được làm một trong hai phần Phần A hoặc B A. Theo chương trình Chuẩn Câu . 2 điểm 1. Trong mặt phẳng tọa độ cho đường tròn C x2 y2 -8x-6y 21 0và điểm M -5 1 . Gọi TpT2 là các tiếp điểm của các tiếp tuyến kẻ từ M đến C . Viết phương trình đường thẳng nố i T T2. 2. Trong không gian với hệ tọa độ Oxyz cho hai đường thẳng 3x-z l 0 2x y-l 0 x _ y 1 _ z A X. di 1 2 1 và d2 a. Chứng minh d1 d2 chéo nhau. b. Viết phương trình đường thẳng d cắt cả d1 d2 và song song với đường thẳng A -ZzZ- z2 1 4 -2 Câu . 1 điểm Cho hai đường thẳng song song di d2. Tìm đường thẳng di có 10