tailieunhanh - SỞ GIÁO DỤC VÀ ĐÀO TẠO CẦN THƠ TRƯỜNG THPT CHUYÊN LÝ TỰ TRỌNG ĐỀ THI THỬ ĐỀ THI TUYỂN SINH ĐẠI HỌC NĂM 2013 Môn: TOÁN; Khối A và khối A1

SỞ GIÁO DỤC VÀ ĐÀO TẠO CẦN THƠ TRƯỜNG THPT CHUYÊN LÝ TỰ TRỌNG ĐỀ THI THỬ ĐỀ THI TUYỂN SINH ĐẠI HỌC NĂM 2013 Môn: TOÁN; Khối A và khối A1 Thời gian làm bài: 180 phút, không kể phát đề | SỞ GIÁO DỤC VÀ ĐÀO TẠO CẦN THƠ TRƯỜNG THPT CHUYÊN LÝ Tự TRỌNG ĐỀ THI THỬ ĐỀ THI TUYỂN SINH ĐẠI HỌC NĂM 2013 Môn TOÁN Khối A và khối A1 Thời gian làm bài 180 phút không kể phát đề PHẦN CHUNG CHO TẤT CẢ THÍ SINH 7 0 điểm Câu I 2 0 điểm Cho hàm số y x 1 . 1 - x 1. Khảo sát sự biến thiên và vẽ đồ thị C của hàm số 1 . 2. Tìm m để đường thẳng d y mx - m -1 cắt đồ thị C tại hai điểm phân biệt M N sao cho AM2 AN2 đạt giá trị nhỏ nhất với A -1 1 . Câu II 2 0 điểm Giải các phương trình sau trên R 1 5 cos 2 x 2 3 2 tan x 2. V4 8x v 12 - 8x 1 - 2x 2. n 2 Câu III 1 0 điểm Tính tích phân I J ln 1 cos x sin 2xdx. 0 Câu IV 1 0 điểm Cho hình chóp có đáy ABC là tam giác vuông tại A AB AC a M là trung điểm của AB hình chiếu vuông góc của S trên mặt phẳng ABC trùng với tâm O đường tròn ngoại tiếp tam giác BMC góc giữa đường thẳng SB và mặt phẳng ABC bằng 600. Tính theo a thể tích khối chóp và khoảng cách từ điểm C đến mặt phẳng SAB . Câu V 1 0 điểm Cho ba số thực x y z thuộc khoảng 1 O . Tìm giá trị nhỏ nhất của biểu thức D 2 1 1 Y 1 1 Y 2 1 1 ì P x Y I y I I z I I. y -1 z -1 I I z -1 x -1I x -1 y -1 I PHẦN RIÊNG 3 0 điểm Thí sinh chỉ được làm một trong hai phần phần A hoặc phần B A. Theo chương trình Chuẩn Câu 2 0 điểm 1. Trong mặt phẳng với hệ tọa độ Oxy cho tam giác ABC có phương trình AB 2x y -1 0 phương trình AC 3x 4y 6 0 và điểm M 1 - 3 nằm trên đường thẳng BC thỏa mãn 3MB 2MC. Tìm tọa độ trọng tâm G của tam giác ABC. 2. Trong không gian với hệ tọa độ Oxyz cho ba điểm A -2 2 -2 B 0 1 -2 và C 2 2 -1 . Viết phương trình mặt phẳng P đi quaA song song với BC và cắt các trụcy Oy z Oz theo thứ tự tại M N khác với gốc tọa độ O sao cho OM 2ON. Câu 1 0 điểm Cho x là số thực dương. Tìm số hạng không chứa x trong khai triển nhị thức Niu-tơn 2 Ý 2 __2 __1 . z L k của I x j I biết rằng A2 Cn 2 Cn 1 4n 6 n e N và Akn Ck theo thứ tự là số chỉnh hợp số tổ k v x I hợp chập k của n phần tử . B. Theo chương trình Nâng cao Câu 2 0 điểm 1. Trong mặt phẳng với hệ tọa độ .