tailieunhanh - Đề thi chọn HSG lớp 9 môn Toán 2012 - 2013 - Sở GD&ĐT Vĩnh Phúc
Mời các bạn và quý thầy cô hãy tham khảo Đề thi chọn HSG lớp 9 môn Toán 2012 - 2013 kèm đáp án của Sở GD&ĐT Vĩnh Phúc giúp các em củng cố kiến thức của mình và thầy cô có thêm kinh nghiệm trong việc ra đề thi. | SỞ GD&ĐT VĨNH PHÚC ĐỀ CHÍNH THỨC KỲ THI CHỌN HSG LỚP 9 NĂM HỌC 2012 -2013 ĐỀ THI MÔN: TOÁN Thời gian làm bài: 150 phút, không kể thời gian giao đề Câu 1 (3,0 điểm). 1 1 1 1 1 1 . 2 1 2 2 1 2 2 1 2 2 3 2012 20132 b) Cho các số nguyên x và y thỏa mãn 4 x 5 y 7. Tìm giá trị nhỏ nhất của biểu thức P 5 | x | 3 | y | . Câu 2 (1,5 điểm). a) Tính tổng: S 1 Tìm các số hữu tỉ x, y thỏa mãn: Câu 3 (1,5 điểm ). 2 3 3 3x 3 y 3 . Cho các số thực dương a, b, c thỏa mãn abc Câu 4 (3,0 điểm ). Cho tam giác nhọn ABC ( AC AB ) có các đường cao AA ', BB ', CC ' và trực tâm H . Gọi (O ) là đường tròn tâm O, đường kính BC. Từ A kẻ các tiếp tuyến AM, 1 . Chứng minh rằng: 6 a 2b 3c 1 1 1 3 a 2b 3c . 2b 3c a a 2b 3c AN tới đường tròn (O) (M, N là các tiếp điểm). Gọi M ' là giao điểm thứ hai của A ' N và đường tròn (O) , K là giao điểm của OH và B ' C ' . Chứng minh rằng: a) M ' đối xứng với M qua BC . b) Ba điểm M , H , N thẳng hàng. KB ' HB ' c) . KC ' HC ' 2 Câu 5 (1,0 điểm). Cho bảng ô vuông 3 3 (3 hàng và 3 cột). Người ta điền tất cả các số từ 1 đến 9 vào các ô của bảng (mỗi số điền vào một ô) sao cho tổng của bốn số trên mỗi bảng con có kích thước 2 2 đều bằng nhau và bằng một số T nào đó. Tìm giá trị lớn nhất có thể được của T. —Hết— Cán bộ coi thi không giải thích gì thêm. Họ và tên thí sinh: . . . . .; Số báo danh . SỞ GD&ĐT VĨNH PHÚC KỲ THI CHỌN HSG LỚP 9 NĂM HỌC 2012 -2013 HƯỚNG DẪN CHẤM MÔN: TOÁN I. LƯU Ý CHUNG: - Hướng dẫn chấm chỉ trình bày một cách giải với những ý cơ bản phải có. Khi chấm bài học sinh làm theo cách khác nếu đúng và đủ ý thì vẫn cho điểm tối đa. - Điểm toàn bài tính đến 0,25 và không làm tròn. - Với bài hình học nếu thí sinh không vẽ hình phần nào thì không cho điểm tương ứng với phần đó. II. ĐÁP ÁN: Câu Ý Nội dung trình bày Điểm 1 (3đ) 1 Ta có: n * ,1 1 1 n 2 (n 1)2 n 2 (n 1)2 n 2 ( n 1) 2 n 2 ( n 1) 2 2 (n 2 n 1) 2 1 1 2 1 2 n (n
đang nạp các trang xem trước