tailieunhanh - Đề thi thử đại học cao đẳng môn toán 2012_Thpt Hậu Lộc

Tham khảo tài liệu 'đề thi thử đại học cao đẳng môn toán 2012_thpt hậu lộc', tài liệu phổ thông, ôn thi đh-cđ phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả | http TRƯỜNG THPT HẬU LỘC 4 _ _ ĐỀ THI THỬ ĐẠI HỌC LẦN 1 NĂM HỌC 2010 - 2011 Môn thi TOÁN - Khối A Thời gian làm bài 180 phút không kể thời gian giao đề PHẦN CHUNG CHO TẤT CẢ THÍ SINH 7 0 điểm Câu I 2 điểm Cho hàm số y x3 - 2mx2 m2x - 2 1 m là tham số. 1. Khảo sát và vẽ đồ thị hàm số 1 khi m 1. 2. Tìm m để hàm số 1 đạt cực đại tại x -1. Câu II 2 điểm 1. Giải phương trình 4 sin2 x T 2 p 3cos2x 1 2cos x - . 4 2. Giải hệ phương trình 3x2 2 y2 5 xy - x y Câu III 1 điểm Tìm họ nguyên hàm của hàm số y x 3 x 1 x lx2 2 x Câu IV 1 điếm Cho hình chóp SABC có SA a SB b SC c. Các góc ở đỉnh S ASB ASC CSB bằng nhau và bằng 600. Tính thể tích khối chóp SABC. Câu V 1 điểm 11 11 7 Tìm giá trị nhỏ nhất của hàm số y x 2 1 x 0 2 x x PHẦN RIÊNG 3 0 điểm Thí sinh chỉ được chọn một trong hai phần chương trình Chuẩn Câu VIa 2 điểm Cho đường tròn C có phương trình x2 y2 - 2x - 6y 6 0 và điểm M -3 1 . 1. Viết phương trình các tiếp tuyến của C qua M. 2. Gọi A B là hai tiếp điểm của hai tiếp tuyến qua M. Viết phương trình đường thẳng AB. Câu VIIa 1 điểm n Tìm hệ số của x5 trong khai triển thành đa thức của x 1 - 2 x 2 x 2 1 3 x n biết n là k 1 n 24 k-1 C số nguyên dương thoả mãn Tồn tại k nguyên 1 k n -1 sao cho 9 chương trình Nâng cao Câu VIb. 2 điểm Trong hệ toạ độ đè các vuông góc trong mặt phẳng cho parabol P có đỉnh tại gốc toạ độ O nhận trục toạ độ làm trục đối xứng và đi qua điểm A 2 2s 2 .Đường thẳng d qua I 5 1 cắt P tại hai điểm M N sao cho MI NI. 1. Tính độ dài đoạn thẳng MN. 2. Tính diện tích DOMN. Câu VIIb 1 điểm Giải bất phương trình log3-2ự2 x2 -1 log3 2ự2 2x -1 log -p 2 . .Hết. Giám thị coi thi không giải thích gì thêm 1 http Câu Câu I Câu II ĐÁP ÁN ĐỀ THI THỬ ĐẠI HỌC MÔN TOÁN KHỐI A LẦN I NĂM học 2010 - 2011. Đáp án 1. khảo sát và vẽ đồ thị hàm số m 1 Học sinh trình bày đầy đủ các bước của khảo sát cho điểm tối đa Với m 1 y x3 - 2x2 x - 2 . Tính y 3x2 - 4x 1 0 . CĐ 3 -57 CT 1 -2 . Hàm số đồng biến trên các khoảng - j 1 .