# tailieunhanh - Đề tài " Unique decomposition of tensor products of irreducible representations of simple algebraic groups "

## We show that a tensor product of irreducible, ﬁnite dimensional representations of a simple Lie algebra over a ﬁeld of characteristic zero determines the individual constituents uniquely. This is analogous to the uniqueness of prime factorisation of natural numbers. 1. Introduction . Let g be a simple Lie algebra over C. The main aim of this paper is to prove the following unique factorisation of tensor products of irreducible, ﬁnite dimensional representations of g: | Annals of Mathematics Unique decomposition of tensor products of irreducible representations of simple algebraic groups By C. S. Rajan Annals of Mathematics 160 2004 683 704 Unique decomposition of tensor products of irreducible representations of simple algebraic groups By C. S. Rajan Abstract We show that a tensor product of irreducible finite dimensional representations of a simple Lie algebra over a field of characteristic zero determines the individual constituents uniquely. This is analogous to the uniqueness of prime factorisation of natural numbers. 1. Introduction . Let g be a simple Lie algebra over C. The main aim of this paper is to prove the following unique factorisation of tensor products of irreducible finite dimensional representations of g Theorem 1. Let g be a simple Lie algebra over C. Let Vi . Vn and Wi . Wm be nontrivial irreducible finite dimensional g-modules. Assume that there is an isomorphism of the tensor products Vi Vn Wi o o Wm as g-modules. Then m n and there is a permutation T of the set 1 . n such that Vi Wt i as g-modules. The particular case which motivated the above theorem is the following corollary Corollary 1. Let V W be irreducible g-modules. Assume that End V End W as g-modules. Then V is either isomorphic to W or to the dual g-module W . When g sl2 and the number of components is at most two the theorem follows by comparing the highest and lowest weights that occur in the tensor 684 C. S. RAJAN product. However this proof seems difficult to generalize see Subsection . The first main step towards a proof of the theorem is to recast the hypothesis as an equality of the corresponding products of characters of the individual representations occurring in the tensor product. A pleasant arithmetical proof for sl2 see Proposition 4 indicates that we are on a right route. The proof in the general case depends on the fact that the Dynkin diagram of a simple Lie algebra is connected and proceeds by induction on the rank of g by

TÀI LIỆU LIÊN QUAN
23    93    0
TÀI LIỆU XEM NHIỀU
8    461593    54
14    21278    50
13    10610    520
14    9810    444
3    9337    104
16    8027    419
249    7939    1112
8    7774    2198
17    6255    240
29    5594    78
TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
68    290    2    27-02-2024
34    297    2    27-02-2024
7    257    2    27-02-2024
16    257    6    27-02-2024
14    255    0    27-02-2024
23    239    0    27-02-2024
11    229    0    27-02-2024
30    210    2    27-02-2024
20    236    2    27-02-2024
14    166    0    27-02-2024
TÀI LIỆU HOT
8    7774    2198
112    3413    1163
249    7939    1112
62    4753    1033
152    4428    954
561    3270    632
122    3563    524
13    10610    520
274    3775    495
35    3935    467
crossorigin="anonymous">
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.