tailieunhanh - Báo cáo hóa học: " Diagonal Kernel Point Estimation of nth-Order Discrete Volterra-Wiener Systems"

Tuyển tập báo cáo các nghiên cứu khoa học quốc tế ngành hóa học dành cho các bạn yêu hóa học tham khảo đề tài: Diagonal Kernel Point Estimation of nth-Order Discrete Volterra-Wiener Systems | EURASIP Journal on Applied Signal Processing 2004 12 1807-1816 2004 Hindawi Publishing Corporation Diagonal Kernel Point Estimation of nth-Order Discrete Volterra-Wiener Systems Massimiliano Pirani Dipartimento di Elettronica Intelligenza artificiale e Telecomunicazioni Universita Politecnica delle Marche Via Brecce Bianche 12 60131 Ancona Italy Email Simone Orcioni Dipartimento di Elettronica Intelligenza artificiale e Telecomunicazioni Universita Politecnica delle Marche Via Brecce Bianche 12 60131 Ancona Italy Email sim@ Claudio Turchetti Dipartimento di Elettronica Intelligenza artificiale e Telecomunicazioni Universita Politecnica delle Marche Via Brecce Bianche 12 60131 Ancona Italy Email turchetti@ Received 1 September 2003 Revised 18 February 2004 The estimation of diagonal elements of a Wiener model kernel is a well-known problem. The new operators and notations proposed here aim at the implementation of efficient and accurate nonparametric algorithms for the identification of diagonal points. The formulas presented here allow a direct implementation of Wiener kernel identification up to the nth order. Their efficiency is demonstrated by simulations conducted on discrete Volterra systems up to fifth order. Keywords and phrases nonlinear system identification Wiener kernels Volterra filtering. 1. INTRODUCTION Among the identification techniques based on input-output correlations the one proposed by Lee and Schetzen 1 is the most widely adopted due to its versatility even if more recent techniques and up-to-date insights on these arguments can be found in 2 and more references in 3 . The application of the Lee-Schetzen technique on discrete nonlinear systems is straightforward and also gains some validity advantages versus the continuous time version as stated rigorously in 4 and in 5 . In 6 the authors describe some characteristic behaviors of the Lee-Schetzen method for discrete systems and propose .

TÀI LIỆU LIÊN QUAN