tailieunhanh - Toán học cao cấp tập 2 part 7

Tham khảo tài liệu 'toán học cao cấp tập 2 part 7', khoa học tự nhiên, toán học phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả | Chứng minh. Giả sử tồn tại tích phân khi đó theo nhận xét 1 có nghĩa là cổ I - E ơ I 4- Mạt khác theo bất đẳng thức kép và theo tính chất của cận trên đúng và cận dưới đúng suy ra 1-E sểS I e Từ đó lim s lim s I và được chứng minh. Bây giờ giả sử có khi đó từ suy ra s I s I liml - liml Kết hợp bất đẳng thức kép này với bất đẳng thức kép ta có đồng thời s I Svàs ơ S Hơn nữa vì lim S - s 0 giả thiết nên cũng suy ra ịo - lị À 0 Bất đẳng thức cuối cùng này chứng tỏ rằng f khả tích trên a b . Nếu ta ký hiệu ủj Mj -rHj ùj được gọi là dao động của f trong Xj-J Xj thì có n n s - s yẨ M -m Axị cjjAXj i t i l và có thể viết điều kiện khả tích dưới dạng lim V cơịAxj - 0 253 Bấy giờ từ điều kiện khả tích ta có thể tìm các dấu hiệu khả tích của một hàm sô quen thuộc Định lí . Nếuf x liên rục trong ỉu bj thì f x khả tích trên Ịa b . Chứng minh. Vì f x liên tục trong khoảng dóng a b nên theo định lí chương 3 f x liên tục đểu trong a b do đó với bất kì s 0 luôn tìm được ô 0 sao cho ịxj -Xj-J s với Xj_p Xj e a b luôn có f xt - f Xị-i ị e nghĩa là ro từ đó dùng có n n ơJjAxj ếy1 Ax E b-a ì l 1 1 Vì b - a là hằng số E bé tuỳ ý nên 7 18 được thoả do đó f x khả tích trên a b . Định lí Nếu f x bị chặn trong ịa b và có một số hữu hạn điểm gián đoạn trong la b thì fịx khả tích trên Để dỡ nặng nề chúng ta không chứng minh chi tiết định lí này mà chi gợi ý cách chứng minh. Trước hết dể ý rang chỉ cần chứng minh -cho trường hợp khoảng a b chứa một điểm gián đoạn tại X - x sau đó với 0 cho trước chia a b thành 3 khoảng a x - x s x và x E b rồi áp dụng tính chất liên tục đều của f x trong các khoảng đóng a x - x E bj để xây dựng các hệ thức thuộc loại 7 18 trong khoảng x - E x e chỉ chứa một số hữu hạn điểm chia của phân điểm nén việc chứng tỏ hệ thức gần như hiển nhiên . Định lí . Nểttfịx bị chặn và đơn điệu trong Ịa bỊ thì khả tích trong Ịa bj. 254 Chứng ninh. Giả sử f x dơn điệu tăng trong a b khi đó Wj

TỪ KHÓA LIÊN QUAN