tailieunhanh - TỰ LUYỆN SỐ 05

Tham khảo tài liệu 'tự luyện số 05', tài liệu phổ thông, ôn thi đh-cđ phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả | Khóa học Luyện đề thi đại học môn Toán - Thầy Phan Huy Khải Đề thi tự luyện số 05 ĐỀ TỰ LUYỆN THI THỬ ĐẠI HỌC SỐ 05 MÔN TOÁN Giáo viên PHAN HUY KHẢI Thời gian làm bài 180 phút PHẦN I Chung cho tất cả các thí sinh Câu I. 2 điểm Cho hàm số y x3 2 m - 1 x2 m2 - 4m 1 x - 2 m2 1 Cm 1. Khảo sát và vẽ đồ thị của hàm số khi m 0 2. Tìm m để Cm đạt cực trị tại x1 x2 sao cho 1 1 x1 x2 2 x1 x2 Câu II. 2 điểm 1. Giải phương trình sin6 x cos6 x . í Iĩ . í n tan I x - I tan I x l 4 I I 4 1 4 2. Giải phương trình 5x 1 x x 3x 4 ạ 3x2 - 7x 3-4x2 -2 73x2 Câu III. 1 điểm Cho Parabol P y x2 1và đường thẳng dm y mx 2. Tìm m để diện tích hình phẳng tạo bởi P và dm có diện tích nhỏ nhất. Câu IV. 1 điểm Trong mặt phẳng P cho tam giác đều ABC cạnh bằng a. Từ B và C về cùng phía của P dựng hai nửa đường thẳng Bx Cy vuông góc với P . Trên Bx và Cy lần lượt lấy hai điểm M N. Đặt BM u CN v 1. Tìm hệ thức giữa u v để MAN là tam giác vuông tại M 2. Giả sử ZAMN 900 và v 2u. Gọi a là góc giữa hai mặt phẳng AMN và BCMN . Tính giá trị của a Câu V. 1 điểm Cho x 3 xy 6 xyz 6 Tìm giá trị nhỏ nhất của P với P x y z PHẦN 2 Phần riêng cho các thí sinh A. Phần dành riêng cho thí sinh học theo chương trình chuẩn Câu . 2 điểm 1. Trên mặt phẳng với hệ tọa độ vuông góc Oxy cho hai đường thẳng d1 3x 4y - 47 0 và d2 4x 3y - 45 0 .j-C Ngôi trường chung của học trò Việt Tổng đài tư vấn 1900 58-58-12 - Trang 1 - Khóa học Luyện đề thi đại học môn Toán - Thầy Phan Huy Khải Đề thi tự luyện số 05 Lập phương trình đường tròn C có tâm nằm trên đường thẳng A 5x 3y - 22 0và tiếp xúc với cả d1 d2 2. Trong không gian với hệ tọa độ Oxyz cho điểm A -4 -2 4 và đường thẳng x -3 - 2t d y 1 -1 z -1 4t Viết phương trình đường thẳng A đi qua A cắt và vuông góc với d Câu . 1 điểm Có 5 nhà Toán học nam 3 nhà Toán học nữ và 4 nhà Vật lý nam. Lập đoàn công tác 3 người cần có cả nam và nữ cần có nhà Toán học và nhà Vật lý. Hỏi có bao nhiêu cách lập đoàn công tác. B. Phần dành cho thí sinh học theo chương trình phân ban

TỪ KHÓA LIÊN QUAN