tailieunhanh - Các phép toán trên tập hợp số tự nhiên

Các phép toán trên tập hợp các số tự nhiên có thể định nghĩa nhờ phép đệ quy như sau Phép cộng 1. a + 0 = a 2. a + S(b) = S(a) + b Phép cộng này khiến (N,+) trở thành một vị nhóm giao hoán với phần tử trung lập là 0, cũng là một vị nhóm tự do với một hệ sinh nào đó. Vị nhóm thỏa tính chất khử và do đó có thể được nhúng trong một nhóm. Nhóm nhỏ nhất chứa các số tự nhiên là số nguyên. Nếu chúng ta ký hiệu. | Các phép toán trên tập hợp số tự nhiên Các phép toán trên tập hợp các số tự nhiên có thể định nghĩa nhờ phép đệ quy như sau Phép cộng 1. a 0 a 2. a S b S a b Phép cộng này khiến N trở thành một vị nhóm giao hoán với phần tử trung lập là 0 cũng là một vị nhóm tự do với một hệ sinh nào đó. Vị nhóm thỏa tính chất khử và do đó có thể được nhúng trong một nhóm. Nhóm nhỏ nhất chứa các số tự nhiên là số nguyên. Nếu chúng ta ký hiệu S 0 là 1 khi đó S b S b 0 b 1 tức là số liền sau của b chẳng qua là b 1. sửa Phép nhân Tương tự như phép cộng chúng ta định nghĩa phép nhân X như sau 1. ax0 0 2. a S b a b a. Phép nhân được định nghĩa như vậy khiến N x trở thành một vị nhóm với phần tử trung lập là 1 một hệ sinh của vị nhóm này chính là tập hợp các số nguyên tố. Phép cộng và phép nhân thỏa tính chất phân phối ax b c a b a c . Các tính chất mà phép cộng và phép nhân thỏa khiến tập số tự nhiên trở thành một trường hợp ví dụ của nửa vành giao hoán. Nửa vành là dạng tổng quát hóa đại số của số tự nhiên mà trong đó phép nhân không cần phải thỏa tính giao hoán. Nếu chúng ta hiểu tập hợp số tự nhiên theo nghĩa không có số 0 và bắt đầu bằng số 1 thì các định nghĩa về phép và X cũng vẫn thế ngoại trừ sửa lại a 1 S a và axl a. Trong phần còn lại của bài này chúng ta viết để ám chỉ tích axb và chúng ta cũng sẽ thừa nhận quy định về thứ tự thực hiện các phép toán. sửa Quan hệ thứ tự Hơn nữa chúng ta có thể định nghĩa một quan hệ thứ tự toàn phần trên tập số tự nhiên như sau Với hai số tự nhiên a b ta có a b nếu và chỉ nếu tồn tại một số tự nhiên c sao cho a c b. Kiểu sắp thứ tự này cùng với các phép toán số học đã định nghĩa ở trên cho ta Nếu a b và c là các số tự nhiên và a b thì a c b c và a c b c. Tập số tự nhiên còn có một tính chất quan trọng nữa là chúng là tập sắp tốt mọi tập không rỗng của các số tự nhiên phải có một phần tử nhỏ nhất. sửa Phép chia có dư và tính chia hết Cho hai số tự nhiên a b ngoài ra b 0. Xét tập hơp M các số tự nhiên p sao cho a. Tập này bị chặn nên có

TỪ KHÓA LIÊN QUAN