tailieunhanh - Experimental Business Research II springer 2005 phần 8

Giả thuyết thứ hai của chúng tôi địa chỉ ảnh hưởng đến nỗ lực của nhân viên dự kiến sẽ thất vọng về việc có phải trả tiền phạt hoặc không nhận được một tiền thưởng. Chúng tôi không phân biệt giữa hợp đồng tiền thưởng và hình phạt hợp đồng vì thất vọng là sẽ ảnh hưởng đến nỗ lực bất kể cho dù hợp đồng được đóng khung như một phần thưởng hoặc như là một hình phạt. . | Dynamic Stability of Nash-Efficient Public Goods Mechanisms 187 The idea of using supermodularity as a robust stability criterion for Nash-efficient mechanisms is not only based on its good theoretical properties but also on strong experimental evidence. In fact it is inspired by the experimental results of Chen and Plott 1996 and Chen and Tang 1998 where they varied a punishment parameter in the Groves-Ledyard mechanism in a set of experiments and obtained totally different dynamic stability results. In this paper we review the main experimental findings on the dynamic stability of Nash-efficient public goods mechanisms examine the supermodularity of existing Nash-efficient public goods mechanisms and use the results to sort a class of experimental findings. Section 2 introduces the environment. Section 3 reviews the experimental results. Section 4 discusses supermodular games. Section 5 investigates whether the existing mechanisms are supermodular games. Section 6 concludes the paper. 2. A PUBLIC GOODS ENVIRONMENT We first introduce notation and the economic environment. Most of the experimental implementations of incentive-compatible mechanisms use a simple environment. Usually there is one private good x one public good y and n 3 players indexed by subscript i. Production technology for the public good exhibits constant returns to scale . the production function f is given by y f x xlb for some b 0. Preferences are largely restricted to the class of quasilinear preferences except Harstad and Marrese 1982 and Falkinger et al. 2000 . Let E represent the set of transitive complete and convex individual preference orderings i and initial endowments ữX. We formally define Eq as follows. DEFINITION 1. Eq i rnX e E i is representable by a C2 utility function of the form vi y xi such that Dvi y 0 and D2vi y 0 for all y 0 and ữX 0 where Dk is the kth order derivative. Falkinger et al. 2000 use a quadratic environment in their experimental study of the Falkinger .

TỪ KHÓA LIÊN QUAN