tailieunhanh - Báo cáo hóa học: "Molecular Dynamics Simulations of the Roller Nanoimprint Process: Adhesion and Other Mechanical Characteristics"

Tuyển tập báo cáo các nghiên cứu khoa học quốc tế ngành hóa học dành cho các bạn yêu hóa học tham khảo đề tài: Molecular Dynamics Simulations of the Roller Nanoimprint Process: Adhesion and Other Mechanical Characteristics | Nanoscale Res Lett 2009 4 913-920 DOI s11671-009-9330-x NANO EXPRESS Molecular Dynamics Simulations of the Roller Nanoimprint Process Adhesion and Other Mechanical Characteristics Cheng-Da Wu Jen-Fin Lin Te-Hua Fang Received 5 March 2009 Accepted 24 April 2009 Published online 29 May 2009 to the authors 2009 Abstract Molecular dynamics simulations using tight-binding many body potential are carried out to study the roller imprint process of a gold single crystal. The effect of the roller tooth s taper angle imprint depth imprint temperature and imprint direction on the imprint force adhesion stress distribution and strain are investigated. A two-stage roller imprint process was obtained from an imprint force curve. The two-stage imprint process included the imprint forming with a rapid increase of imprint force and the unloading stage combined with the adhesion stage. The results show that the imprint force and adhesion rapidly increase with decreasing taper angle and increasing imprint depth. The magnitude of the maximum imprint force and the time at which this maximum occurs are proportional to the imprint depth but independent of the taper angle. In a comparison of the imprint mechanisms with a vertical imprint case while high stress and strain regions are concentrated below the mold for vertical imprint they also occur around the mold in the case of roller imprint. The regions were only concentrated on the substrate atoms underneath the mold in vertical imprint. Plastic flow increased with increasing imprint temperature. Keywords Roller imprint Nanoimprint Molecular dynamics Nanotribology Taper . Wu . Lin H Department of Mechanical Engineering and Center for Micro Nano Science and Technology National Cheng Kung University Tainan 701 Taiwan e-mail jflin@ . Fang Institute of Mechanical and Electromechanical Engineering National Formosa University Yunlin 632 Taiwan Introduction With the increasing demand for nano micropatterns .

TÀI LIỆU LIÊN QUAN
crossorigin="anonymous">
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.