tailieunhanh - Số phức và các dạng toán về số phức

Tham khảo tài liệu 'số phức và các dạng toán về số phức', tài liệu phổ thông, ôn thi đh-cđ phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả | MỘT SỐ DẠNG TOÁN VỀ SỐ PHỨC Biên soạn nGuYỄN trung kiên 0988844088 I DẠNG ĐẠI SỐ CỦA SỐ PHỨC Dạng 1 Bài toán liên quan đến biến đổi số phức Ví dụ 1 Tìm số nguyên x y sao cho số phức z x yi thoả mãn z3 18 26i Giải z3 18 26i x yi 3 18 26i 1 x3 -3xy2 18 I _ A _ 18 3x2y-y3 26 x3 -Vy 3x y - y3 26 v ỵ Giải phương trình bằng cách đặt y tx ta được t 3 x 3 y 1. Vậy z 3 i Ví dụ 2 Cho hai số phức z1 z2 thoả mãn zj z2 z1 z2 5 3 Tính z1 - z2 Giải Đặt z1 a1 bi z2 a2 b2i. Từ giả thiết ta có 2 I 1 2 _ 2 I 1 2 _1 a1 b1 a22 b2 1 a1 a2 2 b1 b2 2 3 2 a1b1 a2b2 1 a1 - a2 2 b1 - b2 2 1 Iz1 - z2 1 Dạng 2 Bài toán liên quan đến nghiệm phức Ví dụ 1 Giải phương trình sau z2 - 8 1 -i z 63 - 16i 0 Giải Ta có A 16 1 - i 2 - 63 - 16i -63 - 16i 1 - 8i 2 Từ đó tìm ra 2 nghiệm là z1 5 - 12i z2 3 4i Ví dụ 2 Giải phương trình sau 2 1 i z2 - 4 2 -i z - 5 - 3i 0 Giải Ta có A 4 2 - i 2 2 1 i 5 3i 16. Vậy phương trình cho hai nghiệm là 2 2 - i 4 _ 4 -ị _ 4 - i 1 -7 _ 3 5 Z1 2 1 i _ 1 i 2 2 2 2 2 - i - 4 - i -i 1 - i 1 1 Z2---- ------- ----- ---- -----1 2 1 i 1 i 2 2 2 Ví dụ 3 Giải phương trình z3 - 9z2 14z - 5 0 Giải Ta có phương trình tương đương với 2z -1 z2 - 4z 5 0. Từ đó ta suy ra phương trình có 3 nghiệm là z1 2 z2 2 - i z3 2 i Ví dụ 4 Giải phương trình 2z3 - 5z2 3z 3 2z 1 i 0 biết phương trình có nghiệm thực n __ a Í2z3 - 5z2 3z 3 0 Giải Vì phương trình có nghiệm thực nên 1 2 z 1 0 hai phương trình của hệ Phương trình đã cho tương đương với 2z 1 z2 -3z 3 i 0. Giải phương trình ta tìm được z -3 z 2-i z 1 i . -1 z thoả mãn cả 2 1 Ví dụ 5 Giải phương trình z3 1 - 2i z2 1 - i z - 2i - 0 biết phương trình có nghiệm thuần ảo Giải Giả sử nghiệm thuần ảo của phương trình là z bi thay vào phương trình ta có bi 3 1 - 2i bi 2 1 - i bi - 2i - 0 b - ố2 -b3 2b2 b - 2 i - 0 . b - b - 0 . . . . . 5 b -1 z - i là nghiệm từ đó ta có phương trình tương -b 2b2 b - 2 - 0 đương với z - i z2 1 - i z 2 - 0. Giải pt này ta sẽ tìm được các nghiệm Ví dụ 6 Tìm nghiệm