tailieunhanh - báo cáo hóa học:" Dilemmas in the reliable estimation of the in-vitro cell viability in magnetic nanoparticle engineering: which tests and what protocols?"

Tuyển tập báo cáo các nghiên cứu khoa học quốc tế ngành hóa học dành cho các bạn yêu hóa học tham khảo đề tài: Dilemmas in the reliable estimation of the in-vitro cell viability in magnetic nanoparticle engineering: which tests and what protocols? | Hoskins et al. Nanoscale Research Letters 2012 7 77 http content 7 1 77 o Nanoscale Research Letters a SpringerOpen Journal NANO EXPRESS Open Access Dilemmas in the reliable estimation of the in-vitro cell viability in magnetic nanoparticle engineering which tests and what protocols Clare Hoskins1 Lijun Wang1 Woei Ping Cheng2 and Alfred Cuschieri1 Abstract Magnetic nanoparticles MNPs made from iron oxides have many applications in biomedicine. Full understanding of the interactions between MNPs and mammalian cells is a critical issue for their applications. In this study MNPs were coated with poly ethylenimine MNP-PEI and poly ethylene glycol MNP-PEI-PEG to provide a subtle difference in their surface charge and their cytotoxicity which were analysed by three standard cell viability assays 3- 4 5-dimethylthiazol-2-yl -5- 3-carboxymethoxyphenyl -2- 4-sulfophenyl -2H-tetrazolium MTS CellTiter-Blue and CellTiter-Glo Promega Southampton UK in SH-SY5Y and RAW cells The data were validated by traditional trypan blue exclusion. In comparison to trypan blue manual counting the MTS and Titer-Blue assays appeared to have consistently overestimated the viability. The Titer-Glo also experienced a small overestimation. We hypothesise that interactions were occurring between the assay systems and the nanoparticles resulting in incorrect cell viability evaluation. To further understand the cytotoxic effect of the nanoparticles on these cells reactive oxygen species production lipid peroxidation and cell membrane integrity were investigated. After pegylation the MNP-PEI-PEG possessed a lower positive surface charge and exhibited much improved biocompatibility compared to MNP-PEI as demonstrated not only by a higher cell viability but also by a markedly reduced oxidative stress and cell membrane damage. These findings highlight the importance of assay selection and of dissection of different cellular responses in in-vitro characterisation of .

TÀI LIỆU LIÊN QUAN