tailieunhanh - Biodiversity Databases: Techniques, Politics, and Applications - Chapter 5

Một cách tiếp cận để giải quyết các quan ngại liên quan đến trở ngại phân loại và khả năng tái thấp thường xuyên của các dữ liệu phân loại là thông qua phát triển loài hệ thống nhận dạng tự động. Các hệ thống này có thể, về nguyên tắc, được kết hợp dựa trên hình ảnh hoặc các cơ sở dữ liệu phân loại dựa trên hình ảnh và văn bản để thêm các yếu tố của chuyên gia chức năng hệ thống | 5 A Comparison between Morphometric and Artificial Neural Network Approaches to the Automated Species Recognition Problem in Systematics Norman MacLeod M. O Neill and Steven A. Walsh CONTENTS The Need for Automated Species Recognition in Materials and Which Approach .53 Scope for Synthesis .57 Further Research Directions .57 Status within the Systematics Community .58 Summary and ABSTRACT One approach to addressing long-standing concerns associated with the taxonomic impediment and occasional low reproducibility of taxonomic data is through development of automated species identification systems. Such systems can in principle be combined with image-based or image- and text-based taxonomic databases to add elements of expert system functionality. Two generalized approaches are considered relevant in this context morphometric systems based on some form of linear discriminant analysis LDA and 37 2007 by Taylor Francis Group LLC 38 Biodiversity Databases artificial neural networks ANNs . In this investigation digital images of 202 specimens representing seven modern planktonic foraminiferal species were used to compare and contrast these approaches in terms of system accuracy generality speed and scalability. Results demonstrate that both approaches could yield systems whose models of morphological variation are over 90 accurate for small data sets. Performance of distance- and landmark-based LDA systems was enhanced substantially through application of least-squares superposition methods that normalize such data for variations in size and in the case of landmark data two-dimensional orientation. Nevertheless this approach is practically limited to the detailed analysis of small numbers of species by a variety of factors including the .

TỪ KHÓA LIÊN QUAN