tailieunhanh - Báo cáo toán học: "Weak compactness in Banach lattices "

Tuyển tập các báo cáo nghiên cứu khoa học ngành toán học tạp chí Journal of Operator Theory đề tài: Yếu chặt trong lattices Banach. | Copyright by INCREST 1981 J. OPERATOR THEORY 6 1981 233-31 1 TEOPEMBI CXO HMOCTH nOHTH BCIOfly B AJirEBPAX DOH HERMAHA M. III. rOJIBflUITEilH CxoflHMOCTb IIO ITII BCK p y nocjieflOBaTejibHocTeii onepaTopoB KaiHiTX HGKOTopoii anreốpe íỊioii HedMana ốbuia BnepBbie paccMOTpena B paốOTe Cnrana 17 . B 9TOỈÍ íKe paốOTe 0BIJI nonỵneH pejibiii piụt oõoốiiỊeHMii BaiKi-ieìỉninx pesyjlbTaTOB Teopi-IH MC pLi II HHTerpiipoBaHM fljiH anreõp Ịioit HeiiMana co cjieflOM a TaKHte BblHBHHyTa oõman Iiflen HByaeHiiH CBOHCTB onepaTOpoB 1IJIH JKC HOCJieaoBaTeJibHOCTeii onepaTopoB npiiHaitJieíKaiij iix HOKOTopoìí aờireốpe bon HeỉiMana CBOÌÍCTB caMHX aíireốp poll HeỉÍMaHa M HCKOTopMX HX npeoốpaaoBaHHÌí COCTOHHHỈÍ Ha aareổpax pon HeỉiMaiia npiỉ noMOipn MeTOftOB Teopim Mepbi II Teopmt BeponTHOGTeiĩ. nocjie H0HBJ1C-HI-IH paổOTbi CiiraJia B 9T0M nanpaBJieHHH ốbiji riojiynen ụeưibiỉí pup pesyjib-TaTOB TaK B naCTHOCTH IISynaJIHCb paSJIIIHHbie CTaTHCTIineCKMe II IIHflHBIIJiy-ajibHbie oproflHHecKHe TeopeMbi npoốaeMa cymecTBOBamiH ycaoBHoro MaTC-MaTiiqecKoro oiKHnai-HiH II cxoaiiMocTb MapTHHrajlOB peiiTpajibiiaH npenejib-naa TeopeMa HJIH nocjieflOBaTejibHocTeii onepaTopoB. HacTOHipaH paốOTa nocBfHuena HeKOMMyTaTHBHOMy oõoổmeHiiio HHflHBHayajibHoii opro Ịiiyec-Koii TeopcMbi TeopeMC 0 CXOHHMOCTH ycjioBHbix MaTeMaTiPiecKHX 0 TeopeMe 06 ycmieHHOM saKOHe oojibimix Hiiceji H TeopeMe 0 aaKOTie noBTop-Iioro JiorapHặMa. CTaTHCTHHecKiie apronnaecKne TCopeMbi ÕBIŨIH HOJiyaeHbi B paốOTax Kovacs Szucs 9 Radin 15 Lance 10 BnepBbie HHBMBHflyajibHaH aproflnnecKan TeopeMa SUH npeoổpaaoBaHHH cftBiira B anreõpax jioKajib-Hbix HaốnionaeMBix Iiojiynena B paốoTe CnHan H AHinejieBHHa 18 . Lance B CBOCH paỐOTe 11 flOKaaaji HTO ecjiii a aBTOMơpặiiSM np0H3B0Jib-HOÌĨ ajireõpbi ẶOH HeỉiMaiia M coxpaHHioipinĩ TOHHoe HopMajibiioe COCTOÍI-N-1 line TO HJIH Jiio6oro A 6 M nocjieaoBaTejibHOCTb A-1 y a A CXOTỊIITCH 1IOHTH 1 0 Bciony. Yeadon 23 3 OKa3aji MHHUBiiftyajibHyio aproflHnecKvio TeopeMy B .

TỪ KHÓA LIÊN QUAN