tailieunhanh - LAMINATED COMPOSITE PLATES

Tài liệu này nhằm để vạch ra những cơ học của sợi cốt thép tấm cán mỏng, dẫn đến một chương trình tính toán có liên quan trong biến dạng phẳng và độ cong của gỗ để tractions và những khoảnh khắc uốn đối với nó. Mặc dù đây là một phần nhỏ trong lĩnh vực tổng thể của vật liệu composite cốt sợi, hoặc thậm chí của laminate lý thuyết, nó là một kỹ thuật quan trọng nên được hiểu bởi tất cả các kỹ sư vật liệu tổng hợp. . | LAMINATED COMPOSITE PLATES David Roylance Department of Materials Science and Engineering Massachusetts Institute of Technology Cambridge MA 02139 February 10 2000 Introduction This document is intended to outline the mechanics of fiber-reinforced laminated plates leading to a computational scheme that relates the in-plane strain and curvature of a laminate to the tractions and bending moments imposed on it. Although this is a small part of the overall field of fiber-reinforced composites or even of laminate theory it is an important technique that should be understood by all composites engineers. In the sections to follow we will review the constitutive relations for isotropic materials in matrix form then show that the extension to transversely isotropic composite laminae is very straightforward. Since each ply in a laminate may be oriented arbitrarily we will then show how the elastic properties of the individual laminae can be transformed to a common direction. Finally we will balance the individual ply stresses against the applied tractions and moments to develop matrix governing relations for the laminate as a whole. The calculations for laminate mechanics are best done by computer and algorithms are outlined for elastic laminates laminates exhibiting thermal expansion effects and laminates exhibiting viscoelastic response. Isotropic linear elastic materials As shown in elementary texts on Mechanics of Materials cf. Roylance 19961 the Cartesian strains resulting from a state of plane stress ơz Txz Tyz 0 are Ễ Ơ- E Vơy 1 ey E y - M 1 7xy QTxy In plane stress there is also a strain in the z direction due to the Poisson effect ez V ơx ơy this strain component will be ignored in the sections to follow. In the above relations there are three elastic constants the Young s modulus E Poisson s ratio V and the shear modulus 1 See References listed at the end of this document. 1 G. However for isotropic materials there are only two independent elastic constants and for

TỪ KHÓA LIÊN QUAN