tailieunhanh - Các dạng hệ phương trình cơ bản và cách giải

*Giới thiệu cấu trúc: A. Các dạng hệ phương trình cơ bản: phương trình bậc 2: : hệ đối xứng loại 1 thuyết tập áp dụng : hệ đối xứng loại 2: thuyết tập áp dụng đẳng cấp thuyết tập áp dụng. cách giải hệ phương trình: pháp biến đổi tương đương: . | Giới thiệu cấu trúc A. Các dạng hệ phương trình cơ bản phương trình bậc 2 hệ đối xứng loại 1 Lý thuyết Bài tập áp dụng hệ đối xứng loại 2 Lý thuyết I. Bài tập áp dụng II. Hệ đẳng cấp Lý thuyết Bài tập áp dụng. B. Các cách giải hệ phương trình pháp biến đổi tương đương Lý thuyết Loại 1 Loại 2 Loại 3 Bài tập áp dụng Bài tập áp dung cho loại 1 Bài tập áp dung cho loại 2 I. Bài tập áp dung cho loại 3 II. phương pháp đặt ẩn phụ Lý thuyết II. 2 Bài tập áp dụng III. phương pháp hàm số Lý thuyết Loại 1 Loại 2 Bài tập áp dụng Bài tập áp dung cho loại 1 III. Bài tập áp dung cho loại 2 IV. phương pháp đánh giá C. tuyển tập các bài toán hay và khó Chuyên đề Hệ phương trình hệ dạng hệ phương trình cơ bản phương trình bậc 2 hệ đối xứng loại 1 Lý thuyết Cách giải của hệ pt đối xứng loại 1 là biến đổi các pt của hệ để đưa về đặt ẩn phụ theo tổng và tích các biến dưới dạng định Lý viet Bài tập áp dụng Bài 1 Giải hệ phương trình x xy y2 4 x xy y 2 Lời giải Đặt x y u và xy t 1 u u -1 4 1 u 1 2 2 Từ 2 t 2 - u thế vào 1 ta có u2 u - 6 0 u -3 1 u -3 u2 2 Từ đó ta có Hệ 1 x y -3 xy 5 hoặc vô nghiệm Hệ 1 x y 2 xy 0 u2 2 1 t2 0 có 2 nghiệm x y 0 0 2 và 2 0 t 5 Biên soạn Nguyễn Thị Yến Giang 1 íx2 ì1 3y 1 Bài 2 Giải hệ phương trình y 2 ì1 3x 2 Lời giải Từ 1 và 2 suy ra x2 - y2 3 y - 3x Vậy hệ đã cho tương đưong với x - y x ì y - 3 0 x2 1 3 y x - y x ì y - 3 0 ì 1 3y x - y 0 1 x ì y - 3 0 x ì 1 3 y . x - y 0 x2 ì 1 3y x ì y - 3 0 . . 3 5 5 x y 2 -3 5 41 X 2 - -3 741 . y 3- T Biên soạn Nguyễn thị Yến Giang Bài 3 Giải hệ 1 jx ì y ì 2 xy 8 2 a x Jỹ 4 Lời giải Đặt u Jx 0 v ựy 0 ta có hệ IVu4 ì v4 ì Ịĩuv 2 u ì v 4 Đặt S u v . P uv thì S 4 7 S2 - 2P - 2P2 ìjừ 8 2 Ta có V2P2 - 64P ì 256 ì ỊĨP 2 1P2 -32Pì 128 8 - P P 8 P2 - 32P ì 128 64 - 16P ìP2 P

TỪ KHÓA LIÊN QUAN