tailieunhanh - Introduction to Programming Using Java Version 6.0 phần 6

Hình minh họa sau đây cho thấy sáu thành phần với sáu phong cách biên giới khác nhau. Các văn bản trong mỗi thành phần là các lệnh tạo ra biên giới cho thành phần: XIB trực tiếp hoặc viết mã của riêng bạn trong việc thực hiện của mỗi bộ điều khiển xem. | CHAPTER 7. ARRAYS 367 if canJump player row col row 1 col-1 row 2 col-2 new CheckersMove row col row 2 col-2 if canJump player row col row-1 col-1 row-2 col-2 new CheckersMove row col row-2 col-2 If any jump moves were found then the user must jump so we don t add any regular moves. However if no jumps were found check for any legal regular moves. Look at each square on the board. If that square contains one of the player s pieces look at a possible move in each of the four directions from that square. If there is a legal move in that direction put it in the moves ArrayList. if 0 for int row 0 row 8 row for int col 0 col 8 col if board row col player board row col playerKing if canMove player row col row 1 col 1 new CheckersMove row col row 1 col 1 if canMove player row col row-1 col 1 new CheckersMove row col row-1 col 1 if canMove player row col row 1 col-1 new CheckersMove row col row 1 col-1 if canMove player row col row-1 col-1 new CheckersMove row col row-1 col-1 If no legal moves have been found return null. Otherwise create an array just big enough to hold all the legal moves copy the legal moves from the ArrayList into the array and return the array. if 0 return null else CheckersMove moveArray new CheckersMove for int i 0 i i moveArray i i return moveArray end getLegalMoves Exercises 368 Exercises for Chapter 7 1. An example in Subsection tried to answer the question How many random people do solution you have to select before you find a duplicate birthday The source code for that program can be found in the file . Here are some related questions How many random people do you have to select before you find three people who share the same birthday That is all three people were born on the same day in the same month but not necessarily in the same year. Suppose you choose 365 people at random. How many different .