tailieunhanh - Đề thi thử đại học môn Toán năm 2011 của Trường THPT Thanh Bình 2 - Đề số 1
Tham khảo tài liệu đề thi thử đại học môn toán năm 2011 của trường thpt thanh bình 2 - đề số 1 , tài liệu phổ thông, ôn thi đh-cđ phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả | TRƯỜNG THPT THANH BÌNH 2 ĐỀ THI THỬ ĐẠI HỌC MÔN TOÁN NĂM 2011 KHỐI: A Thời gian: 180 phút(không kể thời gian phát đề) I. PHẦN CHUNG DÀNH CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu I (2,0 điểm). Cho hàm số (C) 1. Khảo sát sự biến thiên và vẽ đồ thị hàm số (C ) 2. Tìm m để đường thẳng d : y =m(x-2) +2 cắt đồ thị (C ) tại ba điểm phân biệt có hoành độ thoả mãn . Câu II (2,0 điểm). 1. Giải phương trình . 2. Giải phương trình . Câu III (1,0 điểm).Tính tích phân sau Câu IV (1,0 điểm). Cho lăng trụ tam giác đều có cạnh đáy là a và khoảng cách từ A đến mặt phẳng (A’BC) bằng . Tính theo a thể tích khối lăng trụ . Câu V(1,0 điểm). Tìm GTNN của hàm số : II. PHẦN RIÊNG(3,0 điểm): Tất cả thí sinh chỉ được làm một trong hai phần: A hoặc B. A. Theo chương trình Chuẩn Câu VIa (2,0 điểm). 1. Trong mặt phẳng tọa độ (Oxy). Cho tam giác ABC vuông tại A có góc đỉnh B bằng 600 , trọng tâm G(2 ; 3) và phương trình đường thẳng AB : . Tìm toạ độ A,B,C biết xA<0. 2. Trong không gian toạ độ Oxyz cho điểm A(1;0;0);B(0;2;0) ; C(1;3;1). CMR : A,B,C không thẳng hàng và tìm toạ độ tâm đường tròn ngoại tiếp ∆ABC. Câu (2,0 điểm).Tìm m để phương trình sau có nghiệm trên B. Theo chương trình Nâng cao Câu VIb (2,0 điểm). 1. Trong mặt phẳng tọa độ (Oxy) , cho hình chữ nhật ABCD có AB = 2 AD, hai điểm M(1;1); N(2;0) lần lượt nằm trên hai đường thẳng chứa cạnh AB, AD. Xác định toạ độ các đỉnh của hình chữ nhật ABCD biết ABCD có tâm là gốc toạ độ và xA <1. 2. Trong không gian toạ độ Oxyz cho điểm A(1;0;0);B(0;2;0) ; C(1;3;1). CMR : A,B,C không thẳng hàng và tìm toạ độ trực tâm ∆ABC. Câu (2,0 điểm). Giải hệ . Tröôøng THPT Thanh Bình 2 Phan Coâng Tröù Ñeà oân thi Ñaïi hoïc – Cao ñaúng naêm 2011
đang nạp các trang xem trước