tailieunhanh - Đề thi thử đại học môn Toán năm 2011 của Trường THPT Thanh Bình 2 - Đề số 8
Tham khảo tài liệu đề thi thử đại học môn toán năm 2011 của trường thpt thanh bình 2 - đề số 8 , tài liệu phổ thông, ôn thi đh-cđ phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả | TRƯỜNG THPT THANH BÌNH 2 ĐỀ THI THỬ ĐẠI HỌC MÔN TOÁN NĂM 2011 KHỐI: A Thời gian: 180 phút(không kể thời gian phát đề) I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7 điểm) Câu I (2,0 điểm) Cho hàm số y = x3 + 3x2 – mx – 4, trong đó m là tham số. 1. Khảo sát sự biến thiên và vẽ đồ thị hàm số khi m = 0. 2. Với giá trị nào của m thì hàm số nghịch biến trên khoảng ( ; 0). Câu II (2,0 điểm) 1. Giải phương trình : cotx + sinx = 4 (1) 2. Giải phương trình : (2) Câu III (1,0 điểm) Tính tích phân : I = Câu IV (1, 0điểm) Cho khối hộp ’B’C’D’ có tất cả các cạnh bằng nhau và bằng a, . Hãy tính thể tích khối hộp. Câu V (1,0 điểm) Cho x, y, z là các số dương thỏa mãn : . Chứng minh rằng : II. PHẦN RIÊNG (3,0 điểm) Thí sinh chỉ được làm một trong hai phần (phần 1 hoặc phần 2) 1. Theo chương trình Chuẩn : Câu (2,0 điểm) 1. Trong mặt phẳng Oxy cho tam giác ABC có đỉnh A(1 ; 2), đường trung tuyến BM: 2x + y + 1 = 0 và đường phân giác trong CD: x + y – 1 = 0. Hãy viết phương trình đường thẳng BC. 2. Trong không gian với hệ tọa độ Oxyz cho hai điểm A( 1 ; 6 ; 6), B(3 ; 6 ; 2). Tìm điểm M thuộc mp(Oxy) sao cho tổng MA + MB đạt giá trị nhỏ nhất. Câu (1,0 điểm) Từ các chữ số 0, 1, 2, 3, 4, 5 có thể lập được bao nhiêu số tự nhiên có 5 chữ số khác nhau ? Tính tổng của tất cả các số tự nhiên đó. 2. Theo chương trình Nâng cao : Câu (2,0 điểm) 1. Trong mặt phẳng Oxy cho hai đường thẳng 1: x – y + 1 = 0, 2: 2x + y + 1 = 0 và điểm M(2 ; 1). Viết phương trình đường thẳng d đi qua M và cắt hai đường thẳng 1, 2 lần lượt tại A và B sao cho M là trung điểm của đoạn thẳng AB. 2. Trong không gian với hệ tọa độ Oxyz cho honhf hộp chữ nhật ’B’C’D’ có A trung với gốc tọa độ, B(a ; 0 ; 0), D(0 ; a ; 0), A’(0 ; 0 ; b) với a, b > 0. Gọi M là trung điểm cạnh CC’. Tính thể tích khối tứ diện BDA’M theo a và b và xác định tỉ số để hai mặt phẳng (A’BD) và (MBD) vuông góc với nhau. Câu (1,0 điểm) Từ các chữ số 1, 2, 3, 4, 5, 6 có thể lập được bao nhiêu số tự nhiên, mỗi số có 6 chữ số và thỏa mãn điều kiện : Sáu chữ số của mỗi số là khác nhau và trong mỗi số đó tổng của 3 chữ số đầu nhỏ hơn tổng của 3 chữ số cuối một đơn vị ? Tröôøng THPT Thanh Bình 2 Phan Coâng Tröù Ñeà oân thi Ñaïi hoïc – Cao ñaúng naêm 2011
đang nạp các trang xem trước