# tailieunhanh - Handbook of mathematics for engineers and scienteists part 125

## Handbook of mathematics for engineers and scienteists part 125. Tài liệu toán học quốc tế để phục vụ cho các bạn tham khảo, tài liệu bằng tiếng anh rất hữu ích cho mọi người. | 836 Integral Equations As was noted above the eigenfunctions corresponding to distinct characteristic values are orthogonal. Hence the sequence of eigenfunctions of a symmetric kernel can be made orthonormal. In what follows we assume that the sequence of eigenfunctions of a symmetric kernel is orthonormal. We also assume that the characteristic values are always numbered in the increasing order of their absolute values. Thus if Ai X2 . Xn . is the sequence of characteristic values of a symmetric kernel and if a sequence of eigenfunctions i 2 . n . corresponds to the sequence so that pn x - An J K x t pn t dt 0 then b I pi x pj x dx 1 for j Ja ej 0 for i j v 7 and Ai A2 An . If there are infinitely many characteristic values then it follows from the fourth Fredholm theorem that their only accumulation point is the point at infinity and hence An to as n to. The set of all characteristic values and the corresponding normalized eigenfunctions of a symmetric kernel is called the system of characteristic values and eigenfunctions of the kernel. The system of eigenfunctions is said to be incomplete if there exists a nonzero square integrable function that is orthogonal to all functions of the system. Otherwise the system of eigenfunctions is said to be complete. . Bilinear series. Assume that a kernel K x t admits an expansion in a uniformly convergent series with respect to the orthonormal system of its eigenfunctions K x t ak x pk t k 1 for all x in the case of a continuous kernel or for almost all x in the case of a square integrable kernel. We have ak x K x t pk t dt k x J a k and hence K x t V t . k k 1 . Linear Integral Equations of the Second Kind with Constant Limits of Integration 837 Conversely if the series f Q t k 1 fc is uniformly convergent then formula holds. The following assertion holds the bilinear series converges in mean-square to .

TÀI LIỆU LIÊN QUAN
4    68    0
24    189    2
77    318    10
132    101    3
11    125    0
90    156    9
97    140    1
3    64    2
63    83    1
63    119    1
TÀI LIỆU XEM NHIỀU
8    460197    47
14    12417    36
13    9230    483
3    8201    102
14    7983    416
8    6782    2142
16    6755    397
249    5891    980
7    4677    3
17    4525    195
TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
16    103    0    02-02-2023
14    97    0    02-02-2023
19    111    1    02-02-2023
416    99    0    02-02-2023
15    102    1    02-02-2023
371    110    1    02-02-2023
12    88    0    02-02-2023
2    102    0    02-02-2023
8    167    1    02-02-2023
7    108    0    02-02-2023
TÀI LIỆU HOT
8    6782    2142
112    2541    1120
249    5891    980
561    1871    574
152    2111    519
122    2639    491
62    1966    483
13    9230    483
35    2738    436
14    7983    416
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.