tailieunhanh - Đề thi thử đại học , cao đẳng môn Toán - Đề số 6
Tham khảo tài liệu đề thi thử đại học , cao đẳng môn toán - đề số 6 , tài liệu phổ thông, ôn thi đh-cđ phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả | BỘ GIÁO DỤC VÀ ĐÀO TẠO: KỲ THI TUYỂN SINH ĐẠI HỌC NĂM 2010 Môn Thi: TOÁN – Khối A ĐỀ THI THAM KHẢO Thời gian: 180 phút, không kể thời gian giao đề I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu I: (2 điểm) Cho hàm số . 1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. 2) Chứng minh rằng với mọi giá trị thực của m, đường thẳng (d) y = – x + m luôn cắt đồ thị (C) tại hai điểm phân biệt A, B. Tìm giá trị nhỏ nhất của đoạn AB. Câu II: (2 điểm) 1) Giải bất phương trình: 2) Giải phương trình: Câu III: (1 điểm) Tính tích phân Câu IV: (1 điểm) Tính thể tích hình chóp biết SA = a, SB = b, SC = c, , . Câu V: (1 điểm) Với mọi số thực dương a; b; c thoả mãn điều kiện a + b + c = 1. Tìm giá trị nhỏ nhất của biểu thức: II. PHẦN RIÊNG (3 điểm) A. Theo cương trình chuẩn: Câu : (2 điểm) 1) Trong mặt phẳng với hệ trục toạ độ Oxy, cho hai đường thẳng (d1): x + y + 1 = 0, (d2): 2x – y – 1 = 0 . Lập phương trình đường thẳng (d) đi qua M(1;–1) cắt (d1) và (d2) tương ứng tại A và B sao cho 2) Trong không gian với hệ trục toạ độ Oxyz, cho mặt phẳng (P): x + 2y – 2z + 1 = 0 và hai điểm A(1;7; –1), B(4;2;0). Lập phương trình đường thẳng (D) là hình chiếu vuông góc của đường thẳng AB trên (P). Câu : (1 điểm) Ký hiệu x1 và x2 là hai nghiệm phức của phương trình 2x2 – 2x + 1 = 0. Tính giá trị các số phức: và . B. Theo chương trình nâng cao: Câu : (2 điểm) 1) Trong mặt phẳng với hệ trục toạ độ Oxy , cho hypebol (H) có phương trình . Giả sử (d) là một tiếp tuyến thay đổi và F là một trong hai tiêu điểm của (H), kẻ FM (d). Chứng minh rằng M luôn nằm trên một đường tròn cố định, viết phương trình đường tròn đó 2) Trong không gian với hệ trục toạ độ Oxyz, cho ba điểm A(1;0;0), B(0;2;0), C(0;0;3). Tìm toạ độ trưc tâm của tam giác ABC. Câu : (1 điểm) Chứng minh rằng với thoả mãn ta luôn có: . Hướng dẫn Câu I: 2) Phương hoành độ giao điểm của (d) và (C) là: = – x + m luôn có 2 nghiệm phân biệt với mọi m Ta có A(x1; –x1 +m), B(x2; – x2 + m) AB = = EMBED Vậy GTNN của AB = khi và chỉ khi m = 2 Câu II: 1) Điều kiện: 0 < x ≠ 1. Đặt t = BPT 2) Điều kiện: PT – sin3x = sinx + sin2x sin2x(2cosx + 1) = 0 Kết hợp điều kiện, nghiệm của phương trình là: Câu III: Ta có: sinx + cosx = 2cos , sinx = sin = I = = Câu IV: Trên SB, SC lấy các điểm B , C sao cho SB = SC = a. Ta có AB = a, B C = a , AC = a AB C vuông tại B . Gọi H là trung điểm của AC , thì SHB vuông tại H. Vậy SH là đường cao của hình chop C Vậy: ’C’ = . = Câu V: Áp dụng BĐT Cô-si ta có: . Dấu " = " xảy ra 2a = b + c. Tương tự: Suy ra: . Dấu bằng xảy ra a = b = c = . Kết luận: minP = Câu : 1) Giả sử: A(a; –a–1), B(b; 2b – 1) Từ điều kiện tìm được A(1; –2), B(1;1) suy ra (d): x – 1 = 0 2) Gọi (Q) là mặt phẳng qua A, B và vuông góc với (P) ta suy ra (Q): 8x + 7x + 11z – 46 = 0. (D) = (P) (Q) suy ra phương trình (D). Câu : PT có hai nghiệm Câu : 1) (H) có một tiêu điểm F . Giả sử pttt (d): ax + by + c = 0 . Khi đó: 9a2 – 4b2 = c2 (*) Phương trình đường thẳng qua F vuông góc với (d) là (D): b( – a y = 0 Toạ độ của M là nghiệm của hệ: Bình phương hai vế của từng phương trình rồi cộng lại và kết hợp với (*) ta được x2 + y2 = 9 2) Lập phương trình mp(ABC); (P) qua A và (P) BC; (Q) qua B và (Q) AC Giải hệ gồm ba phương trình ba mặt phẳng trên ta được trực tâm H Câu : Ta có: (1) =
đang nạp các trang xem trước